年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省宁德市屏南县2024年九上数学开学复习检测试题【含答案】

    福建省宁德市屏南县2024年九上数学开学复习检测试题【含答案】第1页
    福建省宁德市屏南县2024年九上数学开学复习检测试题【含答案】第2页
    福建省宁德市屏南县2024年九上数学开学复习检测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省宁德市屏南县2024年九上数学开学复习检测试题【含答案】

    展开

    这是一份福建省宁德市屏南县2024年九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了( )米路,却紧伤了花草。
    A.1B.2C.5D.12
    2、(4分)下列说法:矩形的对角线互相垂直且平分;菱形的四边相等;一组对边平行,另一组对边相等的四边形是平行四边形;正方形的对角线相等,并且互相垂直平分.其中正确的个数是( )
    A.个B.个C.个D.个
    3、(4分)下列命题中,正确的是( )
    A.平行四边形的对角线相等
    B.矩形的对角线互相垂直
    C.菱形的对角线互相垂直且平分
    D.对角线相等的四边形是矩形
    4、(4分)下列四个选项中运算错误的是( )
    A.B.C.D.
    5、(4分)若一次函数向上平移2个单位,则平移后得到的一次函数的图象与轴的交点为
    A.B.C.D.
    6、(4分)如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是( ).
    A.4.5B.5C.2D.1.5
    7、(4分)已知多项式x2+bx+c分解因式为(x+3)(x﹣1),则b、c的值为( )
    A.b=3,c=﹣2B.b=﹣2,c=3C.b=2,c=﹣3D.b=﹣3,c=﹣2
    8、(4分)下列命题是真命题的是( )
    A.对角线互相垂直的四边形是菱形B.对角线相等的菱形是正方形
    C.对角线互相垂直且相等的四边形是正方形D.对角线相等的四边形是矩形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)李华在淘宝网上开了一家羽毛球拍专卖店,平均每大可销售个,每个盈利元,若每个降价元,则每天可多销售个.如果每天要盈利元,每个应降价______元(要求每个降价幅度不超过元)
    10、(4分)如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y= (k>0)的图象经过点B,E,则点E的坐标是____
    11、(4分)张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示,根据这个图象求出y与t之间的函数关系式为y=﹣7.5t+25,那么函数y=﹣7.5t+25中的常数﹣7.5表示的实际意义是_____.
    12、(4分)如果关于x的方程bx2=2有实数解,那么b的取值范围是_____.
    13、(4分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形的边长为2, 边在轴上, 的中点与原点重合,过定点与动点的直线记作.
    (1)若的解析式为,判断此时点是否在直线上,并说明理由;
    (2)当直线与边有公共点时,求的取值范围.
    15、(8分)某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.
    (1)根据如图,分别求出两班复赛的平均成绩和方差;
    (2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?
    16、(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.
    (1)求OD长的取值范围;
    (2)若∠CBD=30°,求OD的长.
    17、(10分)如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.
    (1)当m=时,求证:四边形ABEF是正方形.
    (2)记四边形ABEF的面积为S,求S关于m的函数关系式.
    (3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.
    18、(10分)如图,在中,点对角线上,且,连接。
    求证:(1);
    (2)四边形是平行四边形。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平行四边形中,已知,,,点在边上,若以为顶点的三角形是等腰三角形,则的长是_____.
    20、(4分)若因式分解:__________.
    21、(4分)如图,在4×4方格纸中,小正方形的边长为1,点A,B,C在格点上,若△ABC的面积为2,则满足条件的点C的个数是_____.
    22、(4分)如果三角形三边长分别为,k,,则化简得___________.
    23、(4分)下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
    (1)判断的形状,并说明理由;
    (2)若,,试求出四边形的对角线的长.
    25、(10分)某村为绿化村道,计划在村道两旁种植 A、B 两种树木,需要购买这两种树苗 800 棵,A、B 两种树苗的相关信息如表:
    设购买 A 种树苗 x 棵,绿化村道的总费用为 y 元,解答下列问题:
    (1)求出 y 与 x 之间的函数关系式.
    (2)若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要多少元?
    (3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗多少棵?
    26、(12分)已知一次函数的图像经过点(2,1)和(0,-2).
    (1)求该函数的解析式;
    (2)判断点(-4,6)是否在该函数图像上.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,进而得出答案.
    【详解】
    解:由题意可得,直角三角形的斜边为:=5,
    则他们仅仅少走了3+4-5=2(米).
    故选:B.
    此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.
    2、B
    【解析】
    根据矩形的性质可得(1)错误;
    根据菱形的性质可得(2)正确;
    根据平行四边形的判定可得(3)错误;
    根据正方形的性质可得(4)正确;
    【详解】
    (1)矩形的对角线相等且互相平分,故(1)错误;
    (2)菱形的四边相等,故(2)正确;
    (3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;
    (4)正方形的对角线相等,并且互相垂直平分,故(4)正确.
    故选:B.
    此题考查的知识点是特殊的四边形,解题关键是掌握正方形、菱形、矩形的特点.
    3、C
    【解析】
    根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.
    【详解】
    解:A、平行四边形的对角线互相平分,所以A选项错误;
    B、矩形的对角线互相平分且相等,所以B选项错误;
    C、菱形的对角线互相垂直且平分,所以C选项正确;
    D、对角线相等的平行四边形是矩形,所以D选项错误.
    故选:C.
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.
    4、C
    【解析】
    根据二次根式的运算法则,逐一计算即可.
    【详解】
    A选项,,正确;
    B选项,,正确;
    C选项,,错误;
    D选项,,正确;
    故答案为C.
    此题主要考查二次根式的运算,熟练掌握,即可解题.
    5、C
    【解析】
    首先根据平移的性质,求出新的函数解析式,然后即可求出与轴的交点.
    【详解】
    解:根据题意,可得平移后的函数解析式为
    ,即为
    ∴与轴的交点,即
    代入解析式,得
    ∴与轴的交点为
    故答案为C.
    此题主要考查根据函数图像的平移特征,求坐标,熟练掌握,即可解题.
    6、A
    【解析】
    直接根据平行线分线段成比例定理即可得出结论.
    【详解】
    ∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,
    ∴,即,解得DF=4.1.
    故选A.
    本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.
    7、C
    【解析】
    因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出b与c的值即可.
    【详解】
    解:根据题意得:x2+bx+c=(x+3)(x-1)=x2+2x-3,
    则b=2,c=﹣3,
    故选:C.
    本题考查多项式与多项式相乘得到的结果相等,则要求等号两边同类项的系数要相同,熟练掌握多项式的乘法法则是解决本题的关键.
    8、B
    【解析】
    根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.
    【详解】
    A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;
    B:对角线相等的菱形是正方形,故选项正确,为真命题;
    C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;
    D:对角线相等的平行四边形是矩形,故选项错误,为假命题;
    故选:B.
    本题主要考查了菱形、正方形以及矩形的判定方法,熟练掌握相关概念是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    首先设每个羽毛球拍降价x元,那么就多卖出5x个,根据每天要盈利1700元,可列方程求解.
    【详解】
    解:设每个羽毛球拍降价x元,
    由题意得:(40-x)(20+5x)=1700,
    即x2-31x+180=0,
    解之得:x=1或x=20,
    因为 每个降价幅度不超过15元,
    所以 x=1符合题意,
    故答案是:1.
    本题考查了一元二次方程的应用,关键是看到降价和销售量的关系,然后根据利润可列方程求解.
    10、
    【解析】
    设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为( ,3a-3),根据5CD=3CB,可求出点E的坐标
    【详解】
    由题意可设:正方形OABC的边OA=a
    ∴OA= OC=AB= CB
    ∴点B的坐标为(a,a),即k=a
    CF=2OC-3
    ∴CF=2a-3
    ∵OF=OC+CF=a+2a-3=3a-3
    ∴点E的纵坐标为3a-3
    将3a-3代入反比例函数解析式y= 中,可得点E的横坐标为
    ∵四边形CDEF为矩形,
    ∴CD=EF=
    5CD=3CB
    =3a,可求得:a=
    将a=,代入点E的坐标为( ,3a-3),
    可得:E的坐标为
    故答案为:
    本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键
    11、表示每小时耗油7.5升
    【解析】
    根据图像可知出发时油箱内有油25升,当行驶2小时时剩油10升,可求出每小时耗油量为7.5升. 所以﹣7.5表示表示每小时耗油7.5升.
    【详解】
    由图象可知,t=0时,y=25,所以汽车出发时油箱原有油25,
    又经过2小时,汽车油箱剩余油量10升,即2小时耗油25-10=15升,
    15÷ 2=7.5升,
    故答案为:表示每小时耗油7.5升
    本题考查一次函数的定义,熟练掌握一次函数的定义与性质是解题关键.
    12、b>1.
    【解析】
    先确定b≠1,则方程变形为x2=,根据平方根的定义得到>1时,方程有实数解,然后解关于b的不等式即可.
    【详解】
    根据题意得b≠1,
    x2=,
    当>1时,方程有实数解,
    所以b>1.
    故答案为:b>1.
    本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥1)的一元二次方程可采用直接开平方的方法解一元二次方程.
    13、
    【解析】
    绿球的个数除以球的总数即为所求的概率.
    【详解】
    解:∵一个盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,
    ∴小明摸出一个球是绿球的概率是:.
    故答案为:
    此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
    三、解答题(本大题共5个小题,共48分)
    14、(1)点在直线上,见解析;(2)的取值范围是.
    【解析】
    (1)把点A代入解析式,进而解答即可;
    (2)求出直线经过点时的解析式,可知此时t的值,再根据(1)中解析式t的值可得取值范围.
    【详解】
    解:(1)此时点在直线上,
    ∵正方形的边长为2

    ∵点为中点,
    ∴点,,
    把点的横坐标代入解析式,得,等于点的纵坐标为2.
    ∴此时点在直线上.
    (2)由题意可得,点及点,
    当直线经过点时,设的解析式为()
    ∴解得
    ∴的解析式为.
    当时,
    又由,可得当时,
    ∴当直线与边有公共点时,的取值范围是.
    本题考查了一次函数的性质,一次函数图象上点的坐标特征,正方形的性质,掌握判断点是否在直线上的方法以及利用待定系数法求解析式是解题的关键.
    15、(1)九(1)班成绩的平均数为85,方差为70;九(2)班成绩的平均数为85,方差为160;(2)九(1)班方差小,成绩波动小
    【解析】
    (1)从直方图中得到各个选手的得分,由平均数和方差的公式计算;
    (2)由方差的意义分析.
    【详解】
    (1)九(1)班的选手的得分分别为85,75,80,85,100,
    ∴九(1)班成绩的平均数=(85+75+80+85+100)÷5=85,
    九(1)班的方差 =[(85−85) +(75−85) +(80−85) +(85−85) +(100−85) ]÷5=70;
    九(2)班的选手的得分分别为70,100,100,75,80,
    九(2)班成绩的平均数=(70+100+100+75+80)÷5=85,
    九(2)班的方差 =[(70−85) +(100−85) +(100−85) +(75−85) +(80−85) ]÷5=160;
    (2)平均数一样的情况下,九(1)班方差小,成绩波动小。
    此题考查用样本估计总体,加权平均数,方差,条形统计图,解题关键在于看懂图中数据
    16、(1);(2).
    【解析】
    (1)根据三角形三边关系即可求解;
    (2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.
    【详解】
    解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,
    ∴AB=CD=5,BC=AD=1,OD=BD,
    ∴在△ABD中,,
    ∴.
    (2)过点D作DE⊥BC交BC延长线于点E,
    ∵∠CBD=30°,
    ∴DE=BD,
    ∵四边形ABCD是平行四边形,
    ∴OD=BD=DE,
    设OD为x,则DE=x,BD=2x,
    ∴BE=,
    ∵BC=1,
    ∴CE=BE-BC=-1,
    在Rt△CDE中,,
    解得,,
    ∵BE=>BC=1,
    ∴不合题意,舍
    ∴OD=.
    故答案为:(1);(2).
    本题考查了平行四边形性质、三角形三边关系以及勾股定理的运用,熟练解一元二次方程是解决本题的关键.
    17、 (1)证明见解析;(2)S=m(m>0);(3)满足条件的F坐标为(,2)或(,4).
    【解析】
    (1)只要证明△ABO≌△CBE,可得AB=BE,即可解决问题;
    (2)在Rt△AOB中利用勾股定理求出AB,证明△ABO∽△CBE,利用相似三角形的性质求出BE即可解决问题;
    (3)分两种情形I.当点A与D重合时,II.当点G在BC边上时,画出图形分别利用直角三角形和等边三角形求解即可.
    【详解】
    解:(1)如图1中,
    ∵m=,B(,0),
    ∴D(0,),
    ∴OD=OB=,
    ∴矩形OBCD是正方形,
    ∴BO=BC,
    ∵∠OBC=∠ABE=90°,
    ∴∠ABO=∠CBE,∵∠BOA=∠BCE=90°,
    ∴△ABO≌△CBE,
    ∴AB=BE,
    ∵四边形ABEF是平行四边形,
    ∴四边形ABEF是菱形,
    ∵∠ABE=90°,
    ∴四边形ABEF是正方形.
    (2)如图1中,
    在Rt△AOB中,∵OA=1,OB=,
    ∴AB==2,
    ∵∠OBC=∠ABE=90°,
    ∴∠OBA=∠CBE,
    ∵∠BOA=∠BCE=90°,
    ∴△ABO∽△CBE,
    ∴,
    ∴ ,
    ∴BE=m,
    ∴S=AB•BE=m(m>0).
    (3)①如图2中,当点A与D重合时,点G在矩形OBCD的边CD上.
    ∵tan∠ABO=,
    ∴∠ABO=30°,
    在Rt△ABE中,∠BAE=∠ABO=30°,AB=2,
    ∴AE=,
    ∵AG=GE,
    ∴AG=,
    ∴G(,1),设F(m,n),
    则有,,
    ∴m=,n=2,
    ∴F(,2).
    ②如图3中,当点G在BC边上时,作GM⊥AB于M.
    ∵四边形ABEF是矩形,
    ∴GB=GA,
    ∵∠GBO=90°,∠ABO=30°,
    ∴∠ABG=60°,
    ∴△ABG是等边三角形,
    ∴BG=AB=2,
    ∵FG=BG,
    ∴F(,4),
    综上所述,满足条件的F坐标为(,2)或(,4).
    本题考查四边形综合题、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    18、(1)见解析;(2)四边形是平行四边形,见解析.
    【解析】
    (1)根据全等三角形的判定方法SAS,判断出△ADE≌△CBF.
    (2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
    【详解】
    证明:(1)∵四边形是平行四边形,
    ∴,
    ∴,
    在和中,
    ∴(SAS);
    (2)由(1)可得,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,
    ∴四边形是平行四边形.
    此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2或或
    【解析】
    分AB=BP,AB=AP,BP=AP三种情况进行讨论,即可算出BP的长度有三个.
    【详解】
    解:根据以为顶点的三角形是等腰三角形,可分三种情况
    ①若AB=BP
    ∵AB=2
    ∴BP=2
    ②若AB=AP
    过A点作AE⊥BC交BC于E,
    ∵AB=AP,AE⊥BC
    ∴BE=EP
    在Rt△ABE中

    ∴AE=BE
    根据勾股定理
    AE2+BE2=AB2
    即2BE2=4
    解得BE=
    ∴BP=
    ③若BP=AP,则
    过P点作PF⊥AB
    ∵AP=BP,PF⊥AB
    ∴BF=AB=1
    在Rt△BFP中

    ∴PF=BF=1
    根据勾股定理
    BP2=BF2+PF2
    即BP2=1+1=2,
    解得BP=
    ∵2,,都小于3
    故BP=2或BP=或BP=.
    本题主要考查了等腰三角形的性质和判定以及勾股定理,能利用分类讨论思想分三类情况进行讨论是解决本题的关键.BC=3在本题中的作用是BP的长度不能超过3,超过3的答案就要排除.
    20、
    【解析】
    应用提取公因式法,公因式x,再运用平方差公式,即可得解.
    【详解】
    解:
    此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.
    21、1.
    【解析】
    根据三角形的面积公式,只要找出底乘以高等于4的点的位置即可.
    【详解】
    解:如图,点C的位置可以有1种情况.
    故答案为:1.
    本题主要考查了勾股定理及三角形的面积,根据格点的情况,按照一定的位置查找,不要漏掉而导致出错.
    22、11-3k.
    【解析】
    求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.
    【详解】
    ∵一个三角形的三边长分别为、k、,
    ∴-<k<+,
    ∴3<k<4,
    =-|2k-5|,
    =6-k-(2k-5),
    =-3k+11,
    =11-3k,
    故答案为:11-3k.
    本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.
    23、13.1.
    【解析】
    根据加权平均数的计算公式计算可得.
    【详解】
    解:该校篮球队队员的平均年龄为=13.1
    故答案为13.1.
    本题主要考查加权平均数的计算方法,解题的关键是掌握平均数的定义和计算公式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)是等腰直角三角形,理由详见解析;(2)
    【解析】
    (1)利用旋转不变性证明A4BC是等腰直角三角形.
    (2)证明ACDE是等腰直角三角形,再在Rt△ADE中,求出AE即可解决问题.
    【详解】
    解:(1)是等腰直角三角形.
    理由:∵,
    ∴,
    ∴,
    ∴是等腰直角三角形.
    (2)如图:由旋转的性质可知:
    ,,,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴.
    本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型
    25、(1)y=—50x+136000;(2)111000 元.(3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
    【解析】分析:(1)设购买A种树苗x棵,则购买B种树苗(800﹣x)棵,根据总费用=(购买A种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;
    (2)根据这批树苗种植后成活了 670 棵,列出关于x的一元一次方程,求出x的值,即可求解.
    (3)根据总费用不超过 120000 元,列出关于x的一元一次不等式,求解即可.
    详解:(1)设购买 A 种树苗 x 棵,则购买 B 种树苗(800—x)棵,依题意得:
    y=(100+20)x+(150+20)×(800—x)=—50x+136000
    (2)由题意得:80%x+90%(800—x)=670
    解得:x=500
    当 x=500 时,y=—50×500+136000=111000(元).
    答:若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要 111000 元.
    (3)由(1)知购买 A 种树苗 x 棵,购买 B 种树苗(800—x)棵时,
    总费用 y=—50x+136000,由题意得:
    —50x+136000≤120000
    解得:x≥320
    ∴800—x≤1.
    故最多可购买 B 种树苗 1 棵.
    答:若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
    点睛:本题考查了一次函数的应用,一元一次方程的应用,一元一次不等式的应用.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式、列出方程与不等式,明确不等关系的语句“不超过”的含义.
    26、 (1)y=x-2;(2)见解析.
    【解析】
    (1)利用待定系数法进行求解即可;
    (2)将x=-4代入函数解析式,求出y的值,看是否等于6,由此即可作出判断.
    【详解】
    (1)设该函数解析式为y=kx+b,
    把点(2,1)和(0,-2)代入解析式得,
    解得k=,b=-2,
    ∴该函数解析式为y=x-2;
    (2)当x=-4时,y=×(-4)-2=-8≠6,
    ∴点(-4,6)不在该函数图象上.
    本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.
    题号





    总分
    得分
    年龄/岁
    12
    13
    14
    15
    人数
    1
    3
    4
    2
    树苗
    单价(元/棵)
    成活率
    植树费(元/棵)
    A
    100
    80%
    20
    B
    150
    90%
    20

    相关试卷

    2024年福建省宁德市名校九上数学开学复习检测试题【含答案】:

    这是一份2024年福建省宁德市名校九上数学开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年福建省福州市数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省宁德市福鼎市九上数学开学调研模拟试题【含答案】:

    这是一份2024-2025学年福建省宁德市福鼎市九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map