|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省龙岩五中学2024年数学九上开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    福建省龙岩五中学2024年数学九上开学经典模拟试题【含答案】01
    福建省龙岩五中学2024年数学九上开学经典模拟试题【含答案】02
    福建省龙岩五中学2024年数学九上开学经典模拟试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省龙岩五中学2024年数学九上开学经典模拟试题【含答案】

    展开
    这是一份福建省龙岩五中学2024年数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
    A.点CB.点OC.点ED.点F
    2、(4分)估计的值应在( )
    A.2和3之间B.3和4之间C.4和5之间D.5和6之间
    3、(4分)一元二次方程的两根是( )
    A.0,1B.0,2C.1,2D.1,
    4、(4分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是( )
    A.B.C.D.
    5、(4分)下列等式成立的是( )
    A.B.C.D.
    6、(4分)若菱形的周长为8,高为1,则菱形两邻角的度数比为( )
    A.3∶1B.4∶1C.5∶1D.6∶1
    7、(4分)如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是( )
    A.120°B.110°C.115°D.100°
    8、(4分)如图,在平面直角坐标系中,点A1,A2,A3在直线y=x+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)关于 x 的方程 x2+5x+m=0 的一个根为﹣2,则另一个根是________ .
    10、(4分)观察下列各式:



    ……
    请利用你所发现的规律,
    计算+++…+,其结果为_______.
    11、(4分)如图,在中,,点、、分别为、、的中点,若,则_________.
    12、(4分) “折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.
    13、(4分)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若,则________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。
    (1)若DE=DC,求证:四边形CDEF是菱形;
    (2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。
    15、(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:
    (1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C= °,∠D= °
    (2)在探究等对角四边形性质时:
    小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;
    (3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.
    要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.
    (4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.
    16、(8分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
    (1)求与的函数表达式;
    (2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
    17、(10分)如图,在△ABC中,AB=8,AC=1.点D在边AB上,AD=4.2.△ABC的角平分线AE交CD于点F.
    (1)求证:△ACD∽△ABC;
    (2)求的值.
    18、(10分)如图,在正方形内任取一点 ,连接,在⊿外分别以为边作正方形和.
    ⑴.按题意,在图中补全符合条件的图形;
    ⑵.连接,求证:⊿≌⊿;
    ⑶.在补全的图形中,求证:∥.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将直线y=2x-3向上平移5个单位可得______直线.
    20、(4分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.
    21、(4分)如图,在△ABC中,∠ABC=90°,∠ACB=30°,D是BC上的一点,且知AC=20,CD=10﹣6,则AD=_____.
    22、(4分)将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.
    23、(4分)如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知关于的方程
    (1)若请分别用以下方法解这个方程:
    ①配方法;
    ②公式法;
    (2)若方程有两个实数根,求的取值范围.
    25、(10分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.
    (1)分别求出AB,BC,AC的长;
    (2)试判断△ABC是什么三角形,并说明理由.
    26、(12分)如图,是等边三角形,,点是射线上任意点(点与点不重合),连接,将线段绕点顺时针旋转得到线段,连接并延长交直线于点.

    (1)如图①,猜想的度数是__________;
    (2)如图②,图③,当是锐角或钝角时,其他条件不变,猜想的度数,并选取其中一种情况进行证明;
    (3)如图③,若,,,则的长为__________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.
    【详解】
    解:∵AB=2,BC=4,四边形ABCD是矩形,
    ∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
    ∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.
    故选:B.
    本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.
    2、B
    【解析】
    找到被开方数5前后的完全平方数4和9进行比较,可得答案
    【详解】
    解:∵,且


    本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.
    3、A
    【解析】
    利用因式分解法解答即可得到方程的根.
    【详解】
    解:,

    解得,.
    故选:A.
    本题主要考查了一元二次方程的解法,要根据不同的题目采取适当的方法解题.
    4、C
    【解析】
    根据A、B、C、D各图形结合勾股定理一一判断可得答案.
    【详解】
    解:A、有三个直角三角形, 其面积分别为ab,ab和,
    还可以理解为一个直角梯形,其面积为,由图形可知:
    =ab+ab+,
    整理得:(a+b)=2ab+c,a+b+2ab=2ab+ c, a+b= c
    能证明勾股定理;
    B、中间正方形的面积= c,中间正方形的面积=(a+b)-4ab=a+b,
    a+b= c,能证明勾股定理;
    C、不能利用图形面积证明勾股定理, 它是对完全平方公式的说明.
    D、大正方形的面积= c,大正方形的面积=(b-a)+4ab = a+b,,
    a+b= c,能证明勾股定理;
    故选C.
    本题主要考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.
    5、B
    【解析】
    根据二次根式的加减、乘除运算法则以及二次根式的性质解答即可.
    【详解】
    解:A. 不是同类二次根式,故A错误;
    B. ,故B正确;
    C. ,故B错误;
    D. ,故D错误.
    故答案为B.
    本题考查了二次根式的加减、乘除运算法则以及二次根式的性质,牢记并灵活运用运算法则和性质是解答本题的关键.
    6、C
    【解析】
    先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.
    【详解】
    解:如图所示:
    ∵四边形ABCD是菱形,菱形的周长为8,
    ∴AB=BC=CD=DA=2,∠DAB+∠B=180°,
    ∵AE=1,AE⊥BC,
    ∴AE=AB,
    ∴∠B=30°,
    ∴∠DAB=150°,
    ∴∠DAB:∠B=5:1;
    故选:C.
    本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.
    7、A
    【解析】
    根据多边形的外角和求出∠5的度数,然后根据邻补角的和等于180°列式求解即可.

    【详解】
    解:∵∠1=∠2=∠3=∠4=75°,
    ∴∠5=360°﹣75°×4=360°﹣300°=60°,
    ∴∠AED=180°﹣∠5=180°﹣60°=120°.
    故选A.
    本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.
    8、D
    【解析】
    设点A2,A3,A4坐标,根据等腰直角三角形的性质、结合函数解析式,即可求解.
    【详解】
    解:∵A1(1,1)在直线y=x+b上,
    ∴b=,
    ∴y=x+.
    设A2(x2,y2),A3(x3,y3),
    则有 y2=x2+,y3=x3+.
    又∵△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.
    ∴x2=2y1+y2,
    x3=2y1+2y2+y3,
    将点坐标依次代入直线解析式得到:
    y2=y1+1
    y3=y1+y2+1= y2
    又∵y1=1
    ∴y2=,
    y3=()2=,
    ∴点A3的纵坐标是,
    故选:D.
    此题主要考查了一次函数点坐标特点,以及等腰直角三角形斜边上高等于斜边长一半.解题的关键是找出点与直线之间的关系,进而求出点的坐标.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    解:设方程的另一个根为n,
    则有−2+n=−5,
    解得:n=−3.
    故答案为
    本题考查一元二次方程的两根是,则
    10、
    【解析】
    分析:直接根据已知数据变化规律进而将原式变形求出答案.
    详解:由题意可得:
    +++…+
    =+1++1++…+1+
    =9+(1﹣+﹣+﹣+…+﹣)
    =9+
    =9.
    故答案为9.
    点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.
    11、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.
    【详解】
    解:∵∠ACB=90°,点D为AB的中点,
    ∴AB=2CD=16,
    ∵点E、F分别为AC、BC的中点,
    ∴EF=AB=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    12、4.1.
    【解析】
    根据题意结合勾股定理得出折断处离地面的长度即可.
    【详解】
    解:
    设折断处离地面的高度OA是x尺,根据题意可得:
    x1+41=(10﹣x)1,
    解得:x=4.1,
    答:折断处离地面的高度OA是4.1尺.
    故答案为:4.1.
    本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.
    13、220
    【解析】
    先求出∠A与∠B的外角和,再根据外角和进行求解.
    【详解】

    ∴∠A与∠B的外角和为360°-220°=140°,
    ∵∠1,∠2,∠3是五边形ABCDE的3个外角,
    ∴360°-140°=220°,
    故填:220°.
    此题主要考查多边形的外角,解题的关键是熟知多边形的外角和为360°.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)
    【解析】
    (1)由CD//EF,CD=EF可证四边形CDEF是平行四边形,由于DE=DC可证四边形CDEF是菱形
    (2)当四边形ABFE周长最小时此时AE⊥BD,利用勾股定理可求BD、AE、ED的长度,进而求四边形CDEF的周长即可
    【详解】
    证明:(1)在矩形ABCD中CD∥AB,CD=AB,
    ∵EF∥AB, EF=AB
    ∴CD//EF,CD=EF
    ∴四边形CDEF是平行四边形,
    又∵DE=DC
    ∴四边形CDEF是菱形
    (2) 在矩形ABCD中,∠BAD=90°,AD=BC=3

    当四边形ABFE周长最小时,AE⊥BD
    此时;BD= ,∠AED=90°
    由(1)可知四边形CDEF是平行四边形
    四边形CDEF的周长为
    故:当四边形ABFE周长最小时,四边形CDEF的周长为
    本题考查了菱形的判定方法,熟练掌握菱形的判定方法是解题的关键.
    15、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.
    【解析】
    试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;
    (2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;
    (3)根据等对角四边形的定义画出图形即可求解;
    (4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;
    ②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.
    试题解析:
    (1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,
    ∴∠D=∠B=1°,
    ∴∠C=360°﹣1°﹣1°﹣70°=140°;
    (2)证明:如图2,连接BD,
    ∵AB=AD,
    ∴∠ABD=∠ADB,
    ∵∠ABC=∠ADC,
    ∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,
    ∴∠CBD=∠CDB,
    ∴CB=CD;
    (3)如图所示:
    (4)解:分两种情况:
    ①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:
    ∵∠ABC=90°,∠DAB=60°,AB=5,
    ∴∠E=30°,
    ∴AE=2AB=10,
    ∴DE=AE﹣AD=10﹣4═6,
    ∵∠EDC=90°,∠E=30°,
    ∴CD=2,
    ∴AC=;
    ②当∠BCD=∠DAB=60°时,
    过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:
    则∠AMD=90°,四边形BNDM是矩形,
    ∵∠DAB=60°,
    ∴∠ADM=30°,
    ∴AM=AD=2,
    ∴DM=2,
    ∴BM=AB﹣AM=5﹣2=3,
    ∵四边形BNDM是矩形,
    ∴DN=BM=3,BN=DM=2,
    ∵∠BCD=60°,
    ∴CN=,
    ∴BC=CN+BN=3,
    ∴AC=.
    综上所述:AC的长为或.
    故答案为:140,1.
    【点睛】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.
    16、(1),;(2)该镜片的焦距为.
    【解析】
    (1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
    (2)在解析式中,令y=500,求出x的值即可.
    【详解】
    (1)根据题意,设与的函数表达式为
    把,代入中,得
    ∴与的函数表达式为.
    (2)当时,
    答:该镜片的焦距为.
    考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.
    17、(1)证明见解析;(2).
    【解析】
    (1)由AB,AC,AD的长可得出,结合∠CAD=∠BAC即可证出△ACD∽△ABC;
    (2)利用相似三角形的性质可得出∠ACD=∠B,由AE平分∠BAC可得出∠CAF=BAE,进而可得出△ACF∽△BAE,再利用相似三角形的性质即可求出的值.
    【详解】
    (1)证明:∵AB=8,AC=1,AD=4.2,
    ∴.
    又∵∠CAD=∠BAC,
    ∴△ACD∽△ABC;
    (2)∵△ACD∽△ABC,
    ∴∠ACD=∠B.
    ∵AE平分∠BAC,
    ∴∠CAF=BAE,
    ∴△ACF∽△BAE,
    ∴.
    本题考查了相似三角形的判定与性质以及角平分线的定义,解题的关键是:(1)利用“两边对应成比例且夹角相等,两个三角形相似”找出△ACD∽△ABC;(2)利用“两角对应相等,两个三角形相似”找出△ACF∽△BAE.
    18、(1)补全图形见解析;(2)证明见解析;(3)证明见解析.
    【解析】
    分析:⑴问要注意“在⊿外”作正方形;
    本题的⑵问根据正方形的性质得出的结论为三角形全等提供条件,比较简单;
    本题额⑶问可以连接正方形的对角线后,然后利用“内错角相等,两直线平行.”来证明.
    详解:⑴.如图1,在⊿外分别以为边作正方形和.(要注意是在“⊿外”作正方形,见图1)
    ⑵.在图1的基础上连接.
    ∵四边形 、和都是正方形




    ∴⊿≌⊿( )
    ⑶. 继续在图1的基础上连接.(见图2)
    ∵四边形是正方形,且已证



    ∵⊿≌⊿


    ∴ 即
    ∴∥.
    点睛:本题的⑴问要注意的是在“在⊿外”作正方形,所以不要作在三角形内部;本题的⑵问主要是利用正方形提供的条件来证明两个三角形全等,比较简单,常规证法;本题的⑶问巧妙利用与正方形的对角线构成的内错角来提供平行的条件,需正方形和全等三角形来综合提供.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=1x+1
    【解析】
    根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.
    【详解】
    解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,
    那么新直线的k=1,b=-3+5=1.
    ∴新直线的解析式为y=1x+1.
    故答案是:y=1x+1.
    此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.
    20、两组对边分别相等的四边形是平行四边形.
    【解析】
    根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.
    故答案是:两组对边分别相等的四边形是平行四边形.
    21、1
    【解析】
    根据直角三角形的性质求出AB,根据勾股定理求出BC,计算求出BD,根据勾股定理计算即可.
    【详解】
    解:∵∠ABC=90°,∠ACB=30°,
    ∴AB=AC=10,
    由勾股定理得,BC=,
    ∴BD=BC﹣CD=6,
    ∴AD=,
    故答案为:.
    本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
    22、 (-2,2)
    【解析】
    由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.
    【详解】
    解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,
    ∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,
    ∴A′的坐标为(-2,2).
    故答案为:(-2,2).
    本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    23、1
    【解析】
    首先证明是等边三角形,求出,即可解决问题.
    【详解】
    解:由作图可知,
    四边形是平行四边形,
    ,,


    是等边三角形,

    ,,
    四边形的周长为1,
    故答案为1.
    本题考查作图复杂作图,平行四边形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①,见解析;②,见解析;(2)
    【解析】
    (1)①利用配方法解方程;
    ②先计算判别式的值,然后利用求根公式解方程;
    (2)利用判别式的意义得到△=(-5)2-4×(3a+3)≥0,然后解关于a的不等式即可.
    【详解】
    解:当时,原方程为:
    ∴,
    ∴,
    ∴;

    ∴;
    方程有两个实数根,

    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解一元二次方程.
    25、(1),,;(2)是直角三角形,理由见解析
    【解析】
    (1)根据勾股定理即可分别求出AB,BC,AC的长;
    (2)根据勾股定理逆定理即可判断.
    【详解】
    解:(1)根据勾股定理可知:,,;
    (2)是直角三角形,理由如下:
    ,,

    是直角三角形.
    此题考查的是勾股定理和勾股定理的逆定理,掌握用勾股定理解直角三角形和用勾股定理逆定理判定直角三角形是解决此题的关键.
    26、(1);(2),证明见解析;(3) .
    【解析】
    (1)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
    (2)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
    (3)设EC和FO交于点G,根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出、∠DCG=45°、∠BEC=30°,然后利用SAS即可证出,从而可求∠FGC=90°,然后根据等腰直角三角形的性质、勾股定理和30°所对的直角边是斜边的一半即可得出结论.
    【详解】
    解:(1) ∵是等边三角形,
    ∴,.
    ∵线段绕点顺时针旋转60°得到线段,
    ∴,°.
    ∴,
    即.
    在和中
    ∴.
    ∴.
    又,,.
    ∴.
    (2).
    证明:如图②,是等边三角形,
    ∴,.
    ∵线段绕点顺时针旋转60°得到线段,
    ∴,°.
    ∴,
    即.
    在和中
    ∴.
    ∴.
    又,,.
    ∴.
    (3)设EC和FO交于点G
    ∵是等边三角形,
    ∴,.
    ∵线段绕点顺时针旋转60°得到线段,
    ∴,°.
    ∴,
    即.
    ∴∠DCG=∠ECF-∠DCF=45°

    ∴∠BEC=180°-∠ABC-∠BCE=30°
    在和中
    ∴.
    ∴=30°
    ∴∠FGC=180°-∠F-∠ECF=90°
    ∴△CGD为等腰直角三角形,CG= DG
    ∴CG 2+DG2=CD2
    即2CG2=62
    解得:CG= DG=
    在Rt△FGC中,FC=2CG =,FG=
    ∴DF=FG-DG=-
    此题考查的是等边三角形的性质、旋转的性质、全等三角形的判定及性质和直角三角形的性质,掌握等边三角形的性质、旋转的性质、全等三角形的判定及性质、勾股定理和30°所对的直角边是斜边的一半是解决此题的关键.
    题号





    总分
    得分
    眼镜片度数(度)

    镜片焦距(厘米)

    相关试卷

    福建省各地2024年数学九上开学经典模拟试题【含答案】: 这是一份福建省各地2024年数学九上开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】: 这是一份2025届福建省厦门市湖里区湖里实验中学九上数学开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届福建省龙岩一中学分校数学九上开学考试模拟试题【含答案】: 这是一份2025届福建省龙岩一中学分校数学九上开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map