福建省龙岩市永定二中学、三中学联考2024年数学九上开学联考模拟试题【含答案】
展开
这是一份福建省龙岩市永定二中学、三中学联考2024年数学九上开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )
A.梯形B.矩形C.菱形D.正方形
2、(4分)下列说法正确的是( )
A.对应边都成比例的多边形相似B.对应角都相等的多边形相似
C.边数相同的正多边形相似D.矩形都相似
3、(4分)在平面直角坐标系中,将正比例函数(>0)的图象向上平移一个单位长度,那么平移后的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)
5、(4分)如图,在直角坐标系中,一次函数的图象与正比例函数的图象交于点,一次函数的图象为,且,,能围成三角形,则在下列四个数中,的值能取的是( )
A.﹣2B.1C.2D.3
6、(4分)如图,点是正方形的边上一点,把绕点顺时针旋转到的位置.若四边形AECF的面积为20,DE=2,则AE的长为( )
A.4B.C.6D.
7、(4分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )
A.ab>0B.a﹣b>0C.a2+b>0D.a+b>0
8、(4分)一次函数y=﹣2x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,点在直线上.连结,将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为_____.
10、(4分)若,,则代数式__________.
11、(4分)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.
12、(4分)约分:_______.
13、(4分)已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)
(2)
(3)
15、(8分)根据下列条件求出相应的函数表达式:
(1)直线y=kx+5经过点(-2,-1);
(2)一次函数中,当x=1时,y=3;当x=-1时,y=1.
16、(8分)为加快城市群的建设与发展,在A、B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km缩短至180km,平均时速要比现行的平均时速快200km,运行时间仅是现行时间的,求建成后的城际铁路在A、B两地的运行时间?
17、(10分)一种五米种子的价格为5元/kg,A如果一次购买2kg以上的种子,超过2kg部分的种子价格打八折.
(1)填写表:
(2)写出付款金额关于购买量的函数解析式,并画出函数图象.
18、(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.
根据统计图解答下列问题:
(1)本次测试的学生中,得4分的学生有多少人?
(2)本次测试的平均分是多少分?
(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是_____.
20、(4分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=_____.
21、(4分)正方形的对角线长为,则它的边长为_________。
22、(4分)如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP=,则BC的长为_______.
23、(4分)某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形中,,垂足分别为.
(1)求证:;
(2)求证:四边形是平行四边形
25、(10分)a,b分别是7-的整数部分和小数部分.
(1)分别写出a,b的值;
(2)求的值
26、(12分)如图,在中,,,,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,
则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,
根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,
∵AC=BD,
∴EH=FG=FG=EF,
∴四边形EFGH是菱形.
故选C.
2、C
【解析】
试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.
解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;
B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;
C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;
D、矩形属于形状不唯一确定的图形,故错误.
故选C.
考点:相似图形.
点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.
3、D
【解析】
试题分析:将正比例函数y=kx(k>0)的图象向上平移一个单位得到y=kx+1(k>0),
∵k>0,b=1>0,
∴图象经过第一、二、三象限,不经过第四象限.
故选D.
考点:一次函数图象与几何变换.
4、B
【解析】
试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
考点:点的平移.
5、C
【解析】
把M(m,3)代入一次函数y=-2x+5得到M(1,3),求得l2的解析式为y=3x,根据l1,l2,l3能围成三角形,l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),于是得到结论.
【详解】
解:把M(m,3)代入一次函数y=-2x+5得,可得m=1,
∴M(1,3),
设l2的解析式为y=ax,
则3=a,
解得a=3,
∴l2的解析式为y=3x,
∵l1,l2,l3能围成三角形,
∴l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),
∴k≠3,k≠-2,k≠1,
∴k的值能取的是2,
故选C.
本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.
6、D
【解析】
利用旋转的性质得出四边形 AECF的面积等于正方形 ABCD的面积,进而可求
出正方形的边长,再利用勾股定理得出答案.
【详解】
绕点顺时针旋转到的位置.
四边形的面积等于正方形的面积等于20,
,
,
中,
故选:.
本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应
边关系是解题关键.
7、C
【解析】
解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,,故C正确,a+b不一定大于0,故D错误.故选C.
8、A
【解析】
考查一次函数的图像特征.
点拨:由得系数符号和常数b决定.
解答:对于一次函数,当时直线经过第一、二、四象限或第二、三、四象限;,故直线经过第二、三、四象限,不经过第一象限.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.
【详解】
解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,
因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),
把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,
故答案为:2
此题考查一次函数问题,关键是根据代入法解解析式进行分析.
10、20
【解析】
根据完全平方公式变形后计算,可得答案.
【详解】
解:
故答案为:20
本题考查了二次根式的运算,能利用完全平方公式变形计算是解题关键.
11、
【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.
【详解】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C
∴OB=3
∵经过原点的直线将图形分成面积相等的两部分
∴直线上方面积分是4
∴三角形ABO的面积是5
∴
∴
∴直线经过点
设直线l为
则
∴直线的函数关系式为
本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.
12、
【解析】
根据分式的基本性质,分子分母同时除以公因式3ab即可。
【详解】
解:分子分母同时除以公因式3ab,得:
故答案为:
本题考查了分式的基本性质的应用,分式的约分找到分子分母的公因式是关键,是基础题。
13、1
【解析】
根据算术平均数的计算方法列方程求解即可.
【详解】
解:由题意得:
解得:.
故答案为1.
此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)4;(2);(3)
【解析】
(1)先算括号里面的,再算加减,即可得出答案;
(2)先除法,再进行通分运算,最后化简,即可得出答案;
(3)先对括号里面的进行通分,再进行分式的除法运算,即可得出答案.
【详解】
解(1)原式=-1+1+4=4
(2)原式=
=
=
=
(3)原式=
=
=
(1)本题主要考查,以及负指数幂,注意;
(2)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键;
(3)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键.
15、(1);(2).
【解析】
(1)将点代入即可得;
(2)根据点和,直接利用待定系数法即可得.
【详解】
(1)将点代入直线得:
解得
则函数表达式为;
(2)设一次函数的表达式为
由题意,将点和代入得:
解得
则一次函数的表达式为.
本题考查了利用待定系数法求一次函数的表达式,掌握待定系数法是解题关键.
16、h.
【解析】
设城际铁路现行速度是xkm/h,则建成后时速是(x+200)xkm/h;现行路程是210km,建成后路程是180km,由时间=,运行时间=现行时间,列方程即可求出x的值,进而可得建成后的城际铁路在A、B两地的运行时间.
【详解】
设城际铁路现行速度是xkm/h,则建成后时速是(x+200)xkm/h;
根据题意得:×=,
解得:x=70,
经检验:x=70是原方程的解,且符合题意,
∴==(h)
答:建成后的城际铁路在A、B两地的运行时间为h.
本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
17、(1)2.5、5、7.5、10、12、14、16、18;(2)
【解析】
(1)根据题意可以将表格中的数据补充完整;
(2)根据题意和表格中的数据可以写出相应的函数解析式和画出相应的函数图象.
【详解】
解:(1)设购买种子为xkg,付款金额为y元,
当x=0.5时,y=5×0.5=2.5,
当x=1时,y=5×1=5,
当x=1.5时,y=5×1.5=7.5,
当x=2时,y=5×2=10,
当x=2.5时,y=5×2+(2.5﹣2)×5×0.8=12,
当x=3时,y=5×2+(3﹣2)×5×0.8=14,
当x=3.5时,y=5×2+(3.5﹣2)×5×0.8=16,
当x=4时,y=5×2+(4﹣2)×5×0.8=18,
故答案为2.5、5、7.5、10、12、14、16、18;
(2)由题意可得,
当0≤x≤2时,y=5x,
当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,
即付款金额关于购买量的函数解析式是:,
相应的函数图象,如右图所示.
本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,画出相应的函数图象.
18、(1)25人
(2)37分
(3)第二次测试中得4分的学生有15人、得5分的学生有30人.
【解析】
(1)根据频数、频率和总量的关系:频数=总量频率计算即可.
(2)平均数是指在一组数据中所有数据之和再除以数据的个数,据此计算即可.
(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据“得4分和5分的人数共有45人”和“平均分比第一次提高了0.8分”列方程组求解即可.
【详解】
解:(1)本次测试的学生中,得4分的学生有人.
(2)本次测试的平均分平均分(分).
(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,
根据题意,得:,
解得:.
答:第二次测试中得4分的学生有15人、得5分的学生有30人.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(2,5).
【解析】
连接AB,BC,运用平行四边形性质,可知AD∥BC,所以点D的纵坐标是5,再跟BC间的距离即可推导出点D的纵坐标.
【详解】
解:由平行四边形的性质,可知D点的纵坐标一定是5;
又由C点相对于B点横坐标移动了1﹣(﹣3)=4,故可得点D横坐标为﹣2+4=2,
即顶点D的坐标(2,5).
故答案为(2,5).
本题主要是对平行四边形的性质与点的坐标的表示等知识的直接考查,同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求不高.
20、1
【解析】
解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=15°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=1.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=1.故答案为1.
点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.
21、4
【解析】
由正方形的性质求出边长,即可得出周长.
【详解】
如图所示:
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠B=90°,
∴AB+BC=AC,
∴AB= =4,
故答案为:4
此题考查正方形的性质,解题关键在于利用勾股定理
22、1
【解析】
过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=AD=BC,根据已知可求得∠CEF=∠ECF=15°,从而得∠BEF=15°,△BEF为等腰直角三角形,可得BF=EF=FC=BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.
【详解】
过点E作EM∥AD,交BD于M,设EM=x,
∵AB=OB,BE平分∠ABO,
∴△ABO是等腰三角形,点E是AO的中点,BE⊥AO,∠BEO=90°,
∴EM是△AOD的中位线,
又∵ABCD是平行四边形,
∴BC=AD=2EM=2x,
∵EF⊥BC, ∠CAD=15°,AD∥BC,
∴∠BCA=∠CAD=15°,∠EFC=90°,
∴△EFC为等腰直角三角形,
∴EF=FC,∠FEC=15°,
∴∠BEF=90°-∠FEC=15°,
则△BEF为等腰直角三角形,
∴BF=EF=FC=BC=x,
∵EM∥BF,
∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,
则△BFP≌△MEP(ASA),
∴EP=FP=EF=FC=x,
∴在Rt△BFP中,,
即:,
解得:,
∴BC=2=1,
故答案为:1.
考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键.
23、1
【解析】
根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.
【详解】
解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为1时,根据题意得(1+1+x+8)÷4=1,
解得x=12,
将这组数据从小到大的顺序排列8,1,1,12,
处于中间位置的是1,1,
所以这组数据的中位数是(1+1)÷2=1.
故答案为1
本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析
【解析】
(1)证出△ABE≌△CDF即可求解;
(2)证出平行,即可/
【详解】
(1)∵
∴∠AEB=∠CFD
∵平行四边形ABCD
∴∠ABE=∠CDF,AB=CD
∴△ABE≌△CDF
∴AE=CF
(2)∵
∴AE∥CF
∵AE=CF
∴四边形是平行四边形
本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.
25、(1)a=4,;(2)
【解析】
(1)先求出范围,再两边都乘以-1,再两边都加上7,即可求出a、b;
(2)把a、b的值代入求出即可.
【详解】
解:(1) (1)∵2<<3,
∴-3<-<-2,
∴4<7-<5,
∴a=4,b=7--4=
(2)
本题考查了估算无理数的大小和二次根式的运算,主要考查学生的计算能力.
26、
【解析】
在求出BD的长,在中求出CD的长,利用BC=BD+CD可得出结果.
【详解】
解:,
.
在中,
,
,
.
在中,
,
.
.
.
本题主要考查勾股定理,以及含特殊角的直角三角形边之间的关系,掌握基本公式是解题关键.
题号
一
二
三
四
五
总分
得分
购买量/kg
0.5
1
1.5
2
2.5
3
3.5
4
…
付款金额/元
相关试卷
这是一份2024年福建省福州市屏东中学九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省龙岩市永定二中学、三中学联考2023-2024学年数学九上期末学业水平测试试题含答案,共9页。试卷主要包含了下列二次根式是最简二次根式的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份福建省龙岩市永定二中学、三中学联考2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,,,以下结论成立的是等内容,欢迎下载使用。