北京首都师大附中2025届数学九上开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知二次函数y= 2x2+8x-1的图象上有点A(-2,y1),B(-5,y2),C(-1,y3),则y1、y2、y3的大小关系为( )
A.B.C.D.
2、(4分)若x-,则x-y的值为( )
A.2B.1C.0D.-1
3、(4分)在中,,则的长为( )
A.2B.C.4D.4或
4、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是( )
A.AE=BFB.AE⊥BF
C.AO=OED.S△AOB=S四边形DEOF
5、(4分)一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)如果,那么等于
A.3:2B.2:5C.5:3D.3:5
7、(4分)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是( )
A.a=32,b=42,c=52B.a=9,b=12,c=15
C.∠A:∠B:∠C=5:2:3D.∠C﹣∠B=∠A
8、(4分)如图,在中,,若.则正方形与正方形的面积和为( )
A.25B.144C.150D.169
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将边长为4的正方形纸片沿折叠,点落在边上的点处,点与点重合, 与交于点,取的中点,连接,则的周长最小值是__________.
10、(4分)已知点P(a+3,7+a)位于二、四象限的角平分线上,则点P的坐标为_________________.
11、(4分)多项式分解因式的结果是______.
12、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.
13、(4分)直角三角形一条直角边为6,斜边为10,则三边中点所连三角形的周长是_________面积是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.
求证:四边形AECD是菱形.
15、(8分)如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).
(1)只用直尺(没有刻度)和圆规按下列要求作图.
(要求:保留作图痕迹,不必写出作法)
Ⅰ)AC⊥y轴,垂足为C;
Ⅱ)连结AO,AB,设边AB,CO交点E.
(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.
16、(8分)如图,在矩形ABCD中,,.将矩形ABCD沿过点C的直线折叠,使点B落在对角线AC上的点E处,折痕交AB于点F.
(1)求线段AC的长.
(2)求线段EF的长.
(3)点G在线段CF上,在边CD上存在点H,使以E、F、G、H为顶点的四边形是平行四边形,请画出,并直接写出线段DH的长.
17、(10分)如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.
18、(10分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:
(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;
(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在实数范围内分解因式:5-x2=_____.
20、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,AB=CD.点 P 为底边 BC 的延长线上任意一点,PE⊥AB 于 E,PF⊥DC 于 F,BM⊥DC 于 M.请你探究线段 PE、PF、BM 之间的数量关系:
______.
21、(4分)若关于的方程无解,则的值为________.
22、(4分)已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.
23、(4分)在平面直角坐标系中,将点绕点旋转,得到的对应点的坐标是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:(要求:利用数轴解不等式组)
25、(10分)△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于x轴对称的△A1B1C1;
(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1.
26、(12分)已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B
(,).
(1)求这两个函数的表达式;
(2)观察图象,当>0时,直接写出>时自变量的取值范围;
(3)如果点C与点A关于轴对称,求△ABC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先求出二次函数y= 2x2+8x-2的图象的对称轴,然后判断出A(-2,y2),B(-5,y2),C(-2,y2)在抛物线上的位置,再求解.
【详解】
解:∵二次函数y= 2x2+8x-2中a=2>0,
∴开口向上,对称轴为x==-2,
∵A(-2,y2)中x=-2,y2最小,
∵B(-5,y2),
∴点B关于对称轴的对称点B′横坐标是2,则有B′(2,y2),
因为在对称轴得右侧,y随x得增大而增大,故y2>y2.
∴y2>y2>y2.
故选:C.
本题考查二次函数图象上点的坐标特征,关键是掌握二次函数图象的性质.
2、B
【解析】
直接利用二次根式的性质得出y的值,进而得出答案.
【详解】
解:∵与都有意义,
∴y=0,
∴x=1,
故选x-y=1-0=1.
故选:B.
此题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.
3、D
【解析】
分b是斜边、b是直角边两种情况,根据勾股定理计算即可.
【详解】
解:当b是斜边时,c=,
当b是直角边时,c=,
则c=4或,
故选:D.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
4、C
【解析】
试题解析:A、∵在正方形ABCD中,
又
∴≌
故此选项正确;
B、∵≌
故此选项正确;
C、连接
假设AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假设不成立,即
故此选项错误;
D、∵≌
∴S△AOB=S四边形DEOF,故此选项正确.
故选C.
5、B
【解析】
根据一次函数的性质即可得到结果.
,
图象经过一、三、四象限,不经过第二象限,
故选B.
6、B
【解析】
根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a:b=c:d,那么(a+b):b=(c+d):d (b、d≠0)】解答并作出选择.
【详解】
∵=的两个内项是b、2,两外项是a、3,
∴,
∴根据合比定理,得
,即;
同理,得
=2:5.
故选B.
本题考查比例的性质,熟练掌握比例的基本性质是解题关键.
7、A
【解析】
由三角形内角和定理及勾股定理的逆定理进行判断即可.
【详解】
A .a+b=32+42=25=52=c,构不成三角形,也就不可能是直角三角形了,故符合题意;
B.a2+b2=92+122=225=152=c2,根据勾股定理逆定理可以判断,△ABC是直角三角形,故不符合题意;
C.设∠A、∠B、∠C分别是5x、2x、3x,5x+2x+3x=180,x=18,∠A=90°,所以△ABC是直角三角形,故不符合题意;
D.∠C﹣∠B=∠A,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形,故不符合题意,
故选A.
本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
8、D
【解析】
根据勾股定理求出AC2+BC2,根据正方形的面积公式进行计算即可.
【详解】
在Rt△ABC中,AC2+BC2=AB2=169,
则正方形与正方形的面积和= AC2+BC2 =169,
故选D.
本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图,取CD中点K,连接PK,PB,则CK=2,由折叠的性质可得PG=PC,GH=DC=4,PQ=PK,BP=PG,QG=2,要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,即求PK+PB的最小值,观察图形可知,当K、P、B共线时,PK+PB的值最小,据此根据勾股定理进行求解即可得答案.
【详解】
如图,取CD中点K,连接PK,PB,
则CK==2,
∵四边形ABCD是正方形,∴∠ABC=90°,
∵将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合, CG与EF交于点P,取GH的中点Q,
∴PG=PC,GH=DC=4,PQ=PK,
∴BP=PG,QG=2,
要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,
即求PK+PB的最小值,
观察图形可知,当K、P、B共线时,PK+PB的值最小,
此时,PK+PB=BK=,
∴△PGQ周长的最小值为:PQ+PG+QG= PK+PB+QG=BK+QG=2+2,
故答案为2+2.
本题考查了正方形的性质,轴对称图形的性质,直角三角形斜边中线的性质,综合性较强,难度较大,正确添加辅助线,找出PQ+PG的最小值是解题的关键.
10、 (-2,2)
【解析】
根据二、四象限的角平分线上点的坐标特征得到a+3+7+a=0,然后解方程求出a的值,代入即可得出结论.
【详解】
根据题意得:a+3+7+a=0,解得:a=﹣5,∴a+3=-2,7+a=2,∴P(-2,2).
故答案为:(-2,2).
本题考查了点的坐标.掌握二、四象限的角平分线上点的坐标特征是解答本题的关键.
11、
【解析】
先提出公因式a,再利用平方差公式因式分解.
【详解】
解:a3-4a=a(a2-4)=a(a+2)(a-2).
故答案为a(a+2)(a-2).
本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.
12、
【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,
,即DF=3,在直角三角形FHE中,
13、12 6
【解析】
先依据题意作出简单的图形,进而结合图形,运用勾股定理得出AC,由三角形中位线定理计算即可求出结果
【详解】
解:如图,∵D,E,F分别是△ABC的三边的中点,AB=10,BC=6,∠C=90°;
根据勾股定理得:,
∵D,E,F分别是△ABC的三边的中点,
,,
∴∠C=∠BED=∠EDF=90°;
∴△DEF的周长 ;
△DEF的面积
故答案为:12,6
本题考查了三角形的中位线定理和勾股定理,掌握三角形的中位线等于第三边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】证明:∵AB∥CD,CE∥AD,
∴四边形AECD是平行四边形.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB∥CD,
∴∠ACD=∠BAC=∠DAC,
∴AD=DC,
∴四边形AECD是菱形.
15、(1)见解析;(2)△AOE的面积与△BOE的面积相等.
【解析】
试题分析:(1)过点A作AC⊥y轴于C,连接AB交y轴于E,如图,
(2)证明△ACE≌△BOE,则AE=BE,于是根据三角形面积公式可判断△AOE的面积与△BOE的面积相等.
解:(1)如图,
(2)∵A(3,4),B(﹣3,0),
∴AC=OB=3,
在△ACE和△BOE中,
,
∴△ACE≌△BOE,
∴AE=BE,
∴△AOE的面积与△BOE的面积相等.
16、(1);(2);(3)见解析,.
【解析】
(1)根据勾股定理计算AC的长;
(2)设EF=x,在Rt△AEF中,由勾股定理列方程可解答;
(3)先正确画图,根据折叠的性质和平行线的性质证明CH=GH可解答.
【详解】
解:(1)∵四边形ABCD矩形,.
在中,;
(2)设EF的长为x.
由折叠,得,,,
,,,
在中,,即,
解得..
(3)如图,∵四边形EFGH是平行四边形,
∴EF∥GH,EF=GH=3,
∴∠EFC=∠CGH,
∵AB∥CD,
∴∠BFC=∠DCF,
由折叠得:∠BFC=∠EFC,
∴∠CGH=∠DCF,
∴CH=GH=3,
∴DH=CD-CH=8-3=1.
故答案为:(1);(2);(3)见解析,.
本题是四边形的综合题目,考查了矩形的性质、折叠的性质、平行四边形的性质、平行线的性质、勾股定理等知识;熟练掌握矩形的性质和折叠的性质,由勾股定理得出方程是解决问题的关键.
17、AE=CF.理由见解析.
【解析】
试题分析:根据两组对边平行的四边形是平行四边形,可以证明四边形AECF是平行四边形,从而得到AE=CF.
试题解析:AE=CF.理由如下:
∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥EC.
又∵AE∥CF,
∴四边形AECF是平行四边形.
∴AE=CF.
考点:平行四边形的判定与性质.
18、(1)1400元;(2)有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲1台,则购买电压锅1台.理由见解析;(3)购进电饭煲、电压锅各1台.
【解析】
(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;
(3)结合(2)中的数据进行计算.
【详解】
解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得
,
解得 ,
所以,20×(10-200)+10×(200-160)=1400(元).
答:橱具店在该买卖中赚了1400元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,依题意得
,
解得 22≤a≤1.
又∵a为正整数,
∴a可取23,24,1.
故有三种方案:①防购买电饭煲23台,则购买电压锅27台;
②购买电饭煲24台,则购买电压锅26台;
③购买电饭煲1台,则购买电压锅1台.
(3)设橱具店赚钱数额为W元,
当a=23时,W=23×(10-200)+27×(200-160)=2230;
当a=24时,W=24×(10-200)+26×(200-160)=2240;
当a=1时,W=1×(10-200)+1×(200-160)=210;
综上所述,当a=1时,W最大,此时购进电饭煲、电压锅各1台.
本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、( +x)( -x)
【解析】
理解实数范围内是要运算到无理数为止,即可解题.
【详解】
解:5-x2=( +x)( -x)
本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.
20、PE-PF=BM.
【解析】
过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.
【详解】
解:PE-PF=BM. 理由如下:
过点B作BH∥CD,交PF的延长线于点H,如图
∴∠PBH=∠DCB,
∵PF⊥CD,BM⊥CD,
∴BM∥FH,PH⊥BH,
∴四边形BMFH是平行四边形,∠H=90°,
∴FH=BM,
∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∴∠ABC=∠PBH,
∵PE⊥AB,
∴∠PEB=∠H=90°,又PB为公共边,
∴△PBE≌△PBH(AAS),
∴PH=PE,
∴PE=PF+FH=PF+BM.
即PE-PF=BM.
本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.
21、
【解析】
分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.
【详解】
去分母得:3x−2=2x+2+m,
由分式方程无解,得到x+1=0,即x=−1,
代入整式方程得:−5=−2+2+m,
解得:m=−5,
故答案为-5.
此题考查分式方程的解,解题关键在于掌握运算法则.
22、1.
【解析】
根据菱形的性质,菱形的面积=对角线乘积的一半.
【详解】
解:菱形的面积是:.
故答案为1.
本题考核知识点:菱形面积. 解题关键点:记住根据对角线求菱形面积的公式.
23、
【解析】
根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.
【详解】
解:在平面直角坐标系xOy中,将点N(-1,-2)绕点O旋转180°,得到的对应点的坐标是(1,2),
故答案为:(1,2)
本题考查坐标与图形变化-旋转,解答本题的关键是明确题意,熟知坐标变化规律.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
先分别求出各不等式的解集,再求出其公共解集,在数轴上表示即可求解.
【详解】
解:
由①解得,由②解得,在数轴上表示如图所示,
则不等式组的解集为.
此题主要考查不等式组的求解,解题的关键是熟知不等式的性质.
25、(1)见解析;(1)见解析.
【解析】
(1)作出A、B、C三点关于x轴的对称点,把这三点连接起来即得到△A1B1C1;
(1)作出A、B、C三点向右平移4个单位长度后的三点,再把这三点连接起来就得到了平移后的△A1B1C1
【详解】
解:(1)如图所示:
(1)如图所示:
点睛:本题考查对称和平移,对图象对称和平移的概念要清楚,并会画出图形是解决本题的关键
26、(1)反比例函数的表达式为;一次函数的表达式为(2)0<<1;(3)4
【解析】
(1)根据点A的坐标求出反比例函数的解析式为,再求出B的坐标是(-2,-2),利用待定系数法求一次函数的解析式.
(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出当>0时,一次函数的值小于反比例函数的值x的取值范围或0<x<1.
(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.
【详解】
解:(1)∵点A(1,2)在的图象上,∴=1×2=2.
∴反比例函数的表达式为
∵点B在的图象上,∴.∴点B(-2,-2).
又∵点A、B在一次函数的图象上,
∴,解得.
∴一次函数的表达式为.
(2)由图象可知,当 0<<1时,>成立
(3)∵点C与点A关于轴对称,∴C(1,-2).
过点B作BD⊥AC,垂足为D,则D(1,-5).
∴△ABC的高BD=1=3,底为AC=2=3.
∴S△ABC=AC·BD=×3×3=4.
题号
一
二
三
四
五
总分
得分
批阅人
进价(元/台)
售价(元/台)
电饭煲
200
250
电压锅
160
200
北京西城师大附中2025届数学九上开学统考模拟试题【含答案】: 这是一份北京西城师大附中2025届数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京师大附中2024年数学九上开学联考试题【含答案】: 这是一份北京师大附中2024年数学九上开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京西城师大附中数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届北京西城师大附中数学九上开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。