北京市人大附中2025届九年级数学第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)计算(2+)(﹣2)的结果是( )
A.1B.0C.﹣1D.﹣7
2、(4分)下列方程中,有实数解的方程是()
A.B.
C.D.
3、(4分)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( )
A.6,6B.7,6C.7,8D.6,8
4、(4分)下列运算中正确的是( )
A.+=B.
C.D.
5、(4分)如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=4
6、(4分)下列根式中属最简二次根式的是( )
A.B.C.D.
7、(4分)下面是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是( )
A.朝上的点数为 B.朝上的点数为
C.朝上的点数为的倍数D.朝上的点数不小于
8、(4分)如图,在中,为边上一点,将沿折叠至处,与交于点,若,,则的大小为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)数据﹣2、﹣1、0、1、2的方差是_____.
10、(4分)如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.
11、(4分)已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____
12、(4分)如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.
13、(4分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=________cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)问题发现.
如图1,和均为等边三角形,点、、均在同一直线上,连接.
①求证:.
②求的度数.
③线段、之间的数量关系为__________.
(2)拓展探究.
如图2,和均为等腰直角三角形,,点、、在同一直线上,为中边上的高,连接.
①请判断的度数为____________.
②线段、、之间的数量关系为________.(直接写出结论,不需证明)
15、(8分)某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:
(1)根据图示填写下表
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?
16、(8分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.
请根据图表中提供的信息解答下列问题:
(1)填空:m= ,n= .扇形统计图中E组所占的百分比为 %;
(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?
17、(10分) 为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
18、(10分)反比例函数的图象经过点点是直线上一个动点,如图所示,设点的横坐标为且满足过点分别作轴,轴,垂足分别为与双曲线分别交于两点,连结.
(1)求的值并结合图像求出的取值范围;
(2)在点运动过程中,求线段最短时点的坐标;
(3)将三角形沿着翻折,点的对应点得到四边形能否为菱形?若能,求出点坐标;若不能,说明理由;
(4)在点运动过程中使得求出此时的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)外角和与内角和相等的平面多边形是_______________.
20、(4分)如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,则AB的长为______.
21、(4分)若方程组的解是,那么|a-b|= ______________.
22、(4分)如图,四边形纸片ABCD中,,.若,则该纸片的面积为________ .
23、(4分)如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单位:分)情况如下表:
(1)直接写出该同学所得分数的众数与中位数;
(2)计算该同学所得分数的平均数.
25、(10分)已知:如图,一次函数与的图象相交于点.
(1)求点的坐标;
(2)结合图象,直接写出时的取值范围.
26、(12分)先化简、再求值.,其中,.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:
根据二次根式的乘法法则结合平方差公式进行计算即可.
详解:
原式=.
故选C.
点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.
2、C
【解析】
根据二次根式的非负性,可判断A、D无实数根,C有实数根,B解得x=2是分式方程的增根.
【详解】
A中,要使二次根式有意义,则x-2≥0,2-x≥0,即x=2,等式不成立,错误;
B中,解分式方程得:x=2,是方程的增根,错误;
D中,≥0,则≥3,等式不成立,错误;
C中,∵,其中≥0,故-1≤x≤0
解得:x=(舍),x=(成立)
故选:C
本题考查二次根式的非负性和解分式方程,注意在求解分式方程时,一定要验根.
3、B
【解析】
首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.
【详解】
解:把已知数据按从小到大的顺序排序后为5元,1元,1元,7元,8元,9元,10元,
∴中位数为7
∵1这个数据出现次数最多,
∴众数为1.
故选B.
本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.
4、D
【解析】
根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.
【详解】
A. +=2+3=5,故A选项错误;
B. =2,故B选项错误;
C. ,故C选项错误;
D. ,正确,
故选D.
本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.
5、D
【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
6、A
【解析】
试题分析:最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A
考点:最简二次根式
7、D
【解析】
分别求得各个选项中发生的可能性的大小,然后比较即可确定正确的选项.
【详解】
A、朝上点数为2的可能性为;
B、朝上点数为7的可能性为0;
C、朝上点数为3的倍数的可能性为;
D、朝上点数不小于2的可能性为.
故选D.
主要考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.
8、B
【解析】
由平行四边形的性质可得∠B=∠D=52°,由三角形的内角和定理可求∠DEA的度数,由折叠的性质可求∠AED'=∠DEA=108°.
【详解】
∵四边形ABCD是平行四边形,∴∠B=∠D=52°,且∠DAE=20°,∴∠DEA=180°﹣∠D-∠DAE=108°.
∵将△ADE沿AE折叠至△AD'E处,∴∠AED'=∠DEA=108°.
故选B.
本题考查了翻折变换,平行四边形的性质,三角形内角和定理,熟练运用这些性质是本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.
【详解】
由题意可得,
这组数据的平均数是:x= =0,
∴这组数据的方差是: ,
故答案为:2.
此题考查方差,解题关键在于掌握运算法则
10、a
【解析】
找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.
【详解】
作FH⊥CE,连接EF,
∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF
∴△CHF≌△CDF,
又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,
设DF=x,则a2= CE•FH
∵FH=DF,CE= ,
∴整理上式得:2a-x= x,
计算得:x= a.
AF=a-x= a.
故答案为a.
本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.
11、-2
【解析】
由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.
【详解】
由已知得:,
解得:-<k<2.
∵k为整数,
∴k=-2.
故答案为:-2.
本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.
12、
【解析】
根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.
【详解】
解:∵将△CDP沿DP折叠,点C落在点E处,
∴DC=DE=5,CP=EP.
在△OEF和△OBP中,
,
∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP.
设EF=x,则BP=x,DF=DE-EF=5-x,
又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,
∴AF=AB-BF=2+x.
在Rt△DAF中,AF2+AD2=DF2,
∴(2+x)2+32=(5-x)2,
∴x=
∴AF=2+=
故答案为:
本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
13、6+
【解析】
由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.
【详解】
解:作AB的垂直平分线,交AC于点E,
∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,
∴tan30°==,
解得:CD=cm,
∵BC=3cm,∴BE=6cm,∴CE=3cm,
∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.
三、解答题(本大题共5个小题,共48分)
14、(1)①详见解析;②60°;③;(2)①90°;②
【解析】
(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;
(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.
【详解】
解:(1)①证明:∵和均为等边三角形,
∴,,
又∵,
∴,
∴.
②∵为等边三角形,
∴.
∵点、、在同一直线上,
∴,
又∵,
∴,
∴.
③
,
∴.
故填:;
(2)①∵和均为等腰直角三角形,
∴,,
又∵,
∴,
∴,
在和中,
,
∴,
∴.
∵点、、在同一直线上,
∴,
∴.
②∵,
∴.
∵,,
∴.
又∵,
∴,
∴.
故填:①90°;②.
本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.
15、(1)85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定.
【解析】
(1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)在平均数相同的情况下,中位数高的成绩较好;
(3)根据方差公式计算即可:S2=(可简单记忆为“等于差方的平均数”)
【详解】
解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100,
二班5名选手的复赛成绩为:70、100、100、75、80,
一班的众数为85,
一班的平均数为(75+80+85+85+100)÷5=85,
二班的中位数是80;
故填: 85、85 80
(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)
(3)S二班2=
因为S一班2=70则S一班2<S二班2,因此一班成绩较为稳定.
本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.
16、(1)40;100;15;(2)225万人;(3).
【解析】
试题分析:(1)求得总人数,然后根据百分比的定义即可求得;
(2)利用总人数100万,乘以所对应的比例即可求解;
(3)利用频率的计算公式即可求解.
试题解析:解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),
C组的频数n=400﹣80﹣40﹣120﹣60=100,
E组所占的百分比是:×100%=15%;
(2)750×=225(万人);
(3)随机抽查一人,则此人关注C组话题的概率是=.
故答案为40,100,15,.
考点:频数(率)分布表;用样本估计总体;扇形统计图;概率公式.
17、(1)y=8x(0≤x<20)或y=6.4x+1(x≥20);(2)当购买数量x=35时,W总费用最低,W最低=16元.
【解析】
(1)根据函数图象找出点的坐标,结合点的坐标利用待定系数法求出函数解析式即可;
(2)根据B种苗的数量不超过35棵,但不少于A种苗的数量可得出关于x的一元一次不等式组,解不等式组求出x的取值范围,再根据“所需费用为W=A种树苗的费用+B种树苗的费用”可得出W关于x的函数关系式,根据一次函数的性质即可解决最值问题.
【详解】
(1)当0≤x<20时,设y与x的函数关系式为:y=mx,把(20,160)代入y=mx,得160=mx,
解得m=8,
故当0≤x<20时,y与x的函数关系式为:y=8x;
当x≥20时,设y与x的函数关系式为:y=kx+b, 把(20,160),(40,288)代入y=kx+b得:
解得:
∴y=6.4x+1.
∴y与x的函数关系式为y=8x(0≤x<20)或y=6.4x+1(x≥20);
(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,
∴,
∴22.5≤x≤35,
设总费用为W元,则W=6.4x+1+7(45﹣x)=﹣0.6x+347,
∵k=﹣0.6,
∴y随x的增大而减小,
∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=16(元).
本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次不等式组,解决该题型题目时,根据函数图象找出点的坐标,再利用待定系数法求出函数解析式是关键.
18、(1),,(2),(3)能,,
(4)
【解析】
(1)先把(1,3)代入求出k的值,再由两函数有交点求出m的值,根据函数图象即可得出结论;
(2)根据线段OC最短可知OC为∠AOB的平分线,对于,令,即可得出C点坐标,把代入中求出的值即可得出P点坐标;
(3)当OC=OD时,四边形O′COD为菱形,由对称性得到△AOC≌△BOD,即OA=OB,由此时P横纵坐标相等且在直线上即可得出结论.
(4)设,则,,根据PD=DB,构建方程求出,即可解决问题.
【详解】
解:(1)∴反比例函数(x>0,k≠0)的图象进过点(1,3),
∴把(1,3)代入,解得,
.
∵ ,
∴,
,
∴由图象得:;
(2)∵线段OC最短时,
∴OC为∠AOB的平分线,
∵对于,令,
∴,即C,
∴把代入中,得:,即P;
(3)四边形O′COD能为菱形,
∵当OC=OD时,四边形O′COD为菱形,
∴由对称性得到△AOC≌△BOD,即OA=OB,
∴此时P横纵坐标相等且在直线上,
即,解得:,即P.
(4)设B,则,
∵PD=DB,
∴,
解得:(舍弃),
∴,D,,,
本题属于反比例函数综合题,考查的是反比例函数的图像与性质,涉及到菱形的判定与性质、全等三角形的判定与性质等知识,在解答此题时要注意利用数形结合求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、四边形
【解析】
设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
【详解】
设此多边形是n边形,由题意得:
解得
故答案为:四边形.
本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
20、1
【解析】
分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,进而可求出AB的值.
详解:连接DE交AC于P,连接BD,BP,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质)
在Rt△ADE中,DE=,
∴AD1=4,
∴AD=AB=1.
点睛:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.
21、1
【解析】
将代入中,得解得所以|a-b|=|1-2|=1.
22、16
【解析】
本题可通过作辅助线进行解决,延长AB到E,使BE=DA,连接CE,AC,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解.
【详解】
解:如图,延长AB到E,使BE=DA,连接CE,AC,
∵∠CBE=∠BCA+∠CAB,
∠ADC=180°-∠DCA-∠DAC,
∵∠BCD=90°,∠BAD=90°,
∴∠BCA+∠CAB=90°+90°-∠DCA-∠DAC=180°-∠DCA-∠DAC,
∴∠CBE=∠ADC,
又∵BE=DA,CB=CD,
∴△CBE≌△CDA,
∴CE=CA,∠ECB=∠DCA,
∴∠ECA=90°,
∴三角形ACE是等腰直角三角形。
∵AE=AB+BE=AB+AD=8cm
∴S四边形ABCD=S△AEC=16
故答案为:16
本题考查了面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.
23、
【解析】
先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.
【详解】
∵正方形ABCD是轴对称图形,AC是一条对称轴,
∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,
∵AB=4,AF=2,∴AG=AF=2,
∴EG=.
故答案为.
本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)众数9.4,中位数9.1;(2)平均数9.1.
【解析】
(1)根据众数与中位数的定义求解即可;
(2)根据平均数的定义求解即可.
【详解】
(1)从小到大排列此数据为:9.1,9.2,9.1,9.1,9.4,9.4,9.4,
数据9.4出现了三次,最多,为众数,
9.1处在第4位为中位数;
(2)该同学所得分数的平均数为(9.1+9.2+9.1×2+9.4×1)÷7=9.1.
本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.
25、(1)点A的坐标为;(2)
【解析】
(1)将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;
(2)根据函数图象以及点A坐标即可求解.
【详解】
解:(1)依题意得:,
解得:,
∴点A的坐标为;
(2) 由图象得,当时,的取值范围为:.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
26、;
【解析】
根据二次根式混合运算的法则化简,再将x,y的值代入计算即可.
【详解】
解:
当,时
本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.
题号
一
二
三
四
五
总分
得分
批阅人
班级
中位数(分)
众数(分)
平均数(分)
一班
85
二班
100
85
组别
焦点话题
频数(人数)
A
食品安全
80
B
教育医疗
m
C
就业养老
n
D
生态环保
120
E
其他
60
评委
评委1
评委2
评委3
评委4
评委5
评委6
评委7
打分
9.2
9.4
9.3
9.4
9.1
9.3
9.4
班级
中位数(分)
众数(分)
平均数(分)
一班
85
85
85
二班
80
100
85
北京市海淀区清华附中2024年九上数学开学质量跟踪监视试题【含答案】: 这是一份北京市海淀区清华附中2024年九上数学开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京师范大附中2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份北京师范大附中2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。