


北京市第二十二中学2025届数学九年级第一学期开学经典试题【含答案】
展开
这是一份北京市第二十二中学2025届数学九年级第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,广场中心的菱形花坛ABCD的周长是40米,∠A=60°,则A,C两点之间的距离为( )
A.5米B.5米C.10米D.10米
2、(4分)如图所示,▱ABCD的对角线AC,BD相交于点O,,,,▱ABCD的周长( )
A.11B.13C.16D.22
3、(4分)一元二次方程x2-9=0的解为( )
A.x1=x2=3B.x1=x2=-3C.x1=3,x2=-3D.x1=,x2=-
4、(4分)直角三角形中,斜边,,则的长度为( )
A.B.C.D.
5、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
6、(4分)如图,在四边形ABCD中,AD=5,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为( )
A.B.C.D.
7、(4分)小颖从家出发,走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,图(3)中表示小颖离家时间x与距离y之间的关系正确的是( )
A.B.C.D.
8、(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。设平均每次降价的百分率为,根据题意所列方程正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)十二边形的内角和度数为_________.
10、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.
11、(4分)等腰三角形中,两腰上的高所在的直线所形成的锐角为35°,则等腰三角形的底角为___________
12、(4分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________ .
13、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.
那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,一次函数y=(1-3k)x+2k-1,试回答:
(1)k为何值时,y随x的增大而减小?
(2)k为何值时,图像与y轴交点在x轴上方?
(3) 若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.
15、(8分)解方程:
(1) (2) (3)
16、(8分)求证:等腰三角形的底角必为锐角. (请根据题意画出图形,写出已知、求证,并证明)
已知:
求证:
证明:
17、(10分)计算:(1) ;
(2)
18、(10分)如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、DQ、CQ、BQ,设AP=x.
(1)BQ+DQ的最小值是_______,此时x的值是_______;
(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.
①求证:点E是CD的中点; ②求x的值.
(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据10,9,10,12,9的中位数是__________.
20、(4分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为_____.
21、(4分)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.
22、(4分)一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.
23、(4分)一次函数y=2x-1的图象在轴上的截距为______
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)如图,若图中小正方形的边长为1,则△ABC的面积为______.
(2)反思(1)的解题过程,解决下面问题:若,,(其中a,b均为正数)是一个三角形的三条边长,求此三角形的面积.
25、(10分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:
(1)求本次抽样调查的人数;
(2)请补全两幅统计图;
(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.
26、(12分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AC边上的个动点,点D从点A出发,沿边AC向C运动,当运动到点C时停止,设点D运动时间为t秒,点D运动的速度为每秒1个单位长度的.
(1)当t=2时,求CD的长;
(2)求当t为何值时,线段BD最短?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
设AC与BD交于点O.
∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=40÷4=10米
∵∠BAD=60°,
∴△ABD为等边三角形,
∴BD=AB=10米,OD=OB=5米
在Rt△AOB中,根据勾股定理得:OA=5 米
∴AC=2OA=10米.
故选D.
2、D
【解析】
根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.
【详解】
因为▱ABCD的对角线AC,BD相交于点O,,
所以OE是三角形ABD的中位线,
所以AD=2OE=6
所以▱ABCD的周长=2(AB+AD)=22
故选D
本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.
3、C
【解析】
先变形得到x2=9,然后利用直接开平方法解方程.
【详解】
解:x2=9,
∴x=±1,
∴x1=1,x2=-1.
故选:C.
本题考查了直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
4、A
【解析】
根据题意,是直角三角形,利用勾股定理解答即可.
【详解】
解:根据勾股定理,在中,
故选A
本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.
5、A
【解析】
试题分析:解不等式x+2>2得:x>﹣2;解不等式得:x≤2,所以次不等式的解集为:﹣2<x≤2.故选A.
考点:2.在数轴上表示不等式的解集;2.解一元一次不等式组.
6、A
【解析】
根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.
【详解】
作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD,
即∠BAD=∠CAD′,
在△BAD与△CAD′中,
∴△BAD≌△CAD′(SAS),
∴BD=CD′.
∠DAD′=90∘
由勾股定理得DD′=,
∠D′DA+∠ADC=90∘
由勾股定理得CD′=,
∴BD=CD′= ,
故选:A.
此题考查勾股定理,解题关键在于作辅助线
7、A
【解析】
在0—20分钟,小颖从家出发到图书室的过程,随着时间x的改变,距离y越来越大;20—60分钟,小颖在看书,所以随着时间x的改变,距离y不变;60—75分钟,小颖返回家,所以随着时间x的改变,距离y变小.所以答案选A.
8、C
【解析】
试题解析:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),
则列出的方程是36×(1-x)2=1.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1800°
【解析】
根据n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.
【详解】
解:十二边形的内角和为:(n﹣2)•180°=(12﹣2)×180°=1800°.
故答案为1800°.
本题考查了多边形的内角和的知识,解决本题的关键是正确运用多边形的内角和公式,要求同学们熟练掌握.
10、4
【解析】
首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
【详解】
解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴∠ADF=∠ABE,
∵两纸条宽度相同,
∴AF=AE,
∵
∴△ADF≌△ABE,
∴AD=AB,
∴四边形ABCD为菱形,
∴AC与BD相互垂直平分,
∴BD=
故本题答案为:4
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
11、17.5°或72.5°
【解析】
分两种情形画出图形分别求解即可解决问题.
【详解】
解:①如图,当∠BAC是钝角时,
由题意:AB=AC,∠AEH=∠ADH=90°,∠EHD=35°,
∴∠BAC=∠EAD=360°-90°-90°-35°=145°,
∴∠ABC=;
②如图,当∠A是锐角时,
由题意:AB=AC,∠CDA=∠BEA=90°,∠CHE=35°,
∴∠DHE=145°,
∴∠A=360°-90°-90°-115°=35°,
∴∠ABC=;
故答案为:17.5°或72.5°.
本题考查等腰三角形的性质,四边形内角和定理等知识,解题的关键是用分类讨论的思想思考问题,属于中考常考题型.
12、
【解析】
试题分析:根据题意得,等腰△ABC中,OA=OB=3,由等腰三角形的性质可得OC⊥AB,根据勾股定理可得OC=,又因OM=OC=,于是可确定点M对应的数为.
考点:勾股定理;实数与数轴.
13、小于
【解析】
根据图形中的数据即可解答本题.
【详解】
解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,
∴凸面向上”的可能性 小于“凹面向上”的可能性.,
故答案为:小于.
本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3)
【解析】
(1)根据一次函数的性质可得出1﹣3k<0,解之即可得出结论;
(2)根据一次函数图象与系数的关系结合一次函数的定义可得出关于k的一元一次不等式组,解之即可得出结论;
(3)把点(3,4)代入一次函数,解方程即可.
【详解】
(1)∵一次函数y=(1-3k)x+2k-1中y随x的增大而减小,
∴1-3k<0,
解得:,
∴当时,y随x的增大而减小.
(2)∵一次函数y=(1-3k)x+2k-1的图象与y轴交点在x轴上方,
∴,
解得:k>,
∴当k>时,一次函数图象与y轴交点在x轴上方.
(3)∵一次函数y=(1-3k)x+2k-1经过点(3,4),
∴4=3×(1-3k)+2k-1,∴k=-,
一次函数的表达式为:.
本题考查了一次函数的性质、一次函数的定义以及一次函数图象与系数的关系,解题的关键是:(1)根据一次函数的性质找出1﹣3k<0;(2)根据一次函数图象与系数的关系结合一次函数的定义找出关于k的一元一次不等式组.
15、(1),.(2),.(3)原方程无解
【解析】
(1)方程利用公式法求出解即可;
(2)方程利用因式分解法求出解即可;
(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)解:,,,
,
,.
(2)解:原方程可变形为
,
即.
或=0.
所以,.
(3)解:方程两边同时乘,得
.
解这个方程,得.
检验:当时,,是增根,原方程无解.
此题考查了解一元二次方程-因式分解法及公式法,熟练掌握各种解法是解本题的关键.
16、详见解析
【解析】
根据题意写出已知、求证,假设∠B=∠C≥90°,计算得出∠A+∠B+∠C>180°,与三角形内角和定理矛盾,从而得出假设不成立即可.
【详解】
解:求证:等腰三角形的底角必为锐角.
已知:如图所示,△ABC中,AB=AC.
求证:∠B=∠C0°
∴∠A+∠B+∠C>180°
与三角形内角和定理∠A+∠B+∠C=180°矛盾
∴假设不成立
∴等腰△ABC中∠B=∠C
相关试卷
这是一份北京市楼梓庄中学2024年九上数学开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市八十中学2024年九年级数学第一学期开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省淮南实验中学2025届数学九年级第一学期开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
