![安徽省宣城市第六中学2024年数学九上开学质量检测模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16252580/0-1728952895302/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省宣城市第六中学2024年数学九上开学质量检测模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16252580/0-1728952895388/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省宣城市第六中学2024年数学九上开学质量检测模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16252580/0-1728952895413/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省宣城市第六中学2024年数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形的面积为,一边长为,则另一边长为( )
A.B.C.D.
2、(4分)一元二次方程配方后可化为( )
A.B.C.D.
3、(4分)如图,在中,,是的中点,,,若,,
①四边形是平行四边形;
②是等腰三角形;
③四边形的周长是;
④四边形的面积是1.
则以上结论正确的是
A.①②③B.①②④C.①③④D.②④
4、(4分)若一个多边形的内角和小于其外角和,则这个多边形的边数是( )
A.3B.4C.5D.6
5、(4分)下列事件中,必然事件是( )
A.“奉贤人都爱吃鼎丰腐乳”
B.“2018年上海中考,小明数学考试成绩是满分150分”
C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”
D.“在一副扑克牌中任意抽10张牌,其中有5张A”
6、(4分)下列曲线中不能表示是的函数的是
A.B.
C.D.
7、(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是( )
A.36°B.45°C.54°D.72°
8、(4分)如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=,连接AE、AF,则 AE+AF 的最小值为( )
A.B.3C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某初中校女子排球队队员的年龄分布:
该校女子排球队队员的平均年龄是_____岁.(结果精确到0.1)
10、(4分)把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.
11、(4分)如图,的面积为36,边cm,矩形DEFG的顶点D、G分别在AB、AC上,EF在BC上,若,则______cm.
12、(4分)分解因式:______________。
13、(4分)已知,化简二次根式的正确结果是_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简:(.
15、(8分)计算
(1)
(2).
16、(8分)已知方程组,当m为何值时,x>y?
17、(10分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6min发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前走,小亮取回借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆。已知骑车的速度是步行速度的2倍,如图是小亮和姐姐距离家的路程y(m)与出发的时间x(min)的函数图象,根据图象解答下列问题:
(1)小亮在家停留了多长时间?
(2)求小亮骑车从家出发去图书馆时距家的路程 y(m)与出发时间 x(min)之间的函数解析式.
18、(10分)如图,已知□ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为_____.
20、(4分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是_____.
21、(4分)比较大小:________.
22、(4分)如图,将沿方向平移得到,如果四边形的周长是,则的周长是____.
23、(4分)已知 ,,则=______。
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)
(2)
25、(10分)如图所示,平行四边形中,和的平分线交于边上一点 ,
(1)求的度数.
(2)若,则平行四边形的周长是多少?
26、(12分)如图,在中,点,分别在,上,且,连结、.
求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.
【详解】
∵矩形的面积为18,一边长为,
∴另一边长为,
故选:C.
本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.
2、D
【解析】
配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.
【详解】
解:
故选:D.
本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.
3、A
【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.
【详解】
①,,
,
,
,
四边形是平行四边形,故①正确;
②是的中点,,
,
是等腰三角形,故②正确;
③,,
,,
四边形是平行四边形,
,
,
,,
,
,
四边形的周长是故③正确;
④四边形的面积:,故④错误,
故选.
此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB长.
4、A
【解析】
试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,
∴这个多边形是四边形.
故选B.
考点:多边形内角与外角.
5、C
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、“奉贤人都爱吃鼎丰腐乳”是随机事件;
B、“2018年上海中考,小明数学考试成绩是满分150分”是随机事件;
C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件;
D、“在一副扑克牌中任意抽10张牌,其中有5张A”是不可能事件.
故选C.
本题考查了事件发生的可能性大小的判断.
6、D
【解析】
根据函数的定义即可判断.
【详解】
因为是的函数时,只能一个x对应一个y值,故D错误.
此题主要考查函数的定义,解题的关键是熟知函数图像的性质.
7、A
【解析】
由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.
【详解】
解:设∠A=x°,
∵BD=AD,
∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,
∵BD=BC,
∴∠BDC=∠BCD=2x°,
∵AB=AC,
∴∠ABC=∠BCD=2x°,
在△ABC中x+2x+2x=180,
解得:x=36,
∴∠C=∠BDC=72°,
∴∠DBC=36°,
故选:A.
此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.
8、A
【解析】
如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
【详解】
解:如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
∵AH=EF,AH∥EF,
∴四边形EFHA是平行四边形,
∴EA=FH,
∵FA=FC,
∴AE+AF=FH+CF=CH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵AH∥DB,
∴AC⊥AH,
∴∠CAH=90°,
在Rt△CAH中,CH= =2 ,
∴AE+AF的最小值2,
故选:A.
本题考查轴对称-最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、14.1.
【解析】
根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.
【详解】
该校女子排球队队员的平均年龄是≈14.1(岁),
故答案为:14.1.
此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.
10、1<m<1.
【解析】
直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,求出直线y=﹣x﹣3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.
【详解】
解:直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第二象限,
∴,
解得:1<m<1.
故答案为1<m<1.
本题考查一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于2、纵坐标大于2.
11、6
【解析】
作AH⊥BC于H点,可得△ADG∽△ABC,△BDE∽△BAH,根据相似三角形对应边比例等于相似比可解题.
【详解】
解:作AH⊥BC于H点,
∵四边形DEFG为矩形,
∴△ADG∽△ABC,△BDE∽△BAH,
∵的面积为36,边cm
∴AH=6
∵EF=2DE,即DG=2DE
解得:DE=3
∴DG=6
故答案为:6
本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.
12、4x(x+1)(x-1)
【解析】
4x3-4x=4x(x2-1)=4x(x+1)(x-1).
故答案为4x(x+1)(x-1).
13、
【解析】
由题意:-a3b≥0,即ab≤0,
∵a<b,
∴a≤0<b;
所以原式=|a|=-a.
三、解答题(本大题共5个小题,共48分)
14、8-4
【解析】
【分析】运用平方差公式和完全平方公式可求出结果.
【详解】解:原式=2﹣1+3﹣4+4
=8﹣4.
【点睛】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.
15、4+;6+
【解析】
(1)先根据二次根式的乘除法则运算,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后合并即可.
【详解】
解:(1)原式=﹣+2=4﹣+2=4+;
(2)原式=5﹣+﹣1=4+.
考点:二次根式的混合运算
16、.
【解析】
解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.
【详解】
解:,
②×2﹣①得:x=m﹣3③,
将③代入②得:y=﹣m+5,
∴得,
∵x>y,
∴m﹣3>﹣m+5,
解得m>4,
∴当m>4时,x>y.
17、(1)小亮在家停留了1min;(2).
【解析】
【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;
(2)根据C、D两点坐标,利用待定系数法即可解决问题.
【详解】(1)步行速度:300÷6=50m/min,单车速度:2×50=100m/min,
单车时间:3000÷100=30min,40-30=10,
∴C(10,0),
∴A到B是时间==3min,
∴B(9,0),
∴BC=1,
∴小亮在家停留了1分钟;
(2)设解析式为y=kx+b ,将C (10,0) 和D (40,300) 代入得
,解得,
所以 .
【点睛】本题考查一次函数的应用、路程、速度、时间之间的关系等知识,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题.
18、证明见解析.
【解析】
由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.
【详解】
证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,
∵AE平分∠BAD,CF平分∠BCD,
∴∠EAB=∠BAD,∠FCD=∠BCD,
∴∠EAB=∠FCD,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA),
∴BE=DF.
∵AD=BC,
∴AF=EC.
本题主要考查平行四边形的性质与判定;证明四边形AECF为平行四边形是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据菱形的性质得出AC⊥BD,由勾股定理可求AD=CD=1,再根据平行四边形的判定定理得四边形OCED为平行四边形,由矩形的判定定理得出四边形OCED是矩形,则该矩形的对角线相等,即CD=OE=1.
【详解】
证明:∵四边形ABCD为菱形,
∴AC⊥BD,OA=AC=3,OD=BD=4,
∴∠AOD=90°,
∴AD==1=CD
∵DE∥AC,CE∥BD
∴四边形OCED为平行四边形,
又∵AC⊥BD
∴四边形OCED为矩形
∴CD=OE=1
故答案为:1
本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
20、18
【解析】
分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.
详解:∵在菱形ABCD中,AC=8,BD=6,
∴AB=BC,∠AOB=90°,AO=4,BO=3,
∴BC=AB=,
∴△ABC的周长=AB+BC+AC=5+5+8=18.
故答案为18
点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
21、<
【解析】
试题解析:∵
∴
∴
22、
【解析】
根据平移的性质可得,即可求得的周长.
【详解】
平移,
,
,
,
故答案为:1.
本题考查了三角形平移的问题,掌握平移的性质是解题的关键.
23、60
【解析】
=2ab(a+b),将a+b=3,ab=10,整体带入即可.
【详解】
=2ab(a+b)=2×3×10=60.
本题主要考查利用提公因式法分解因式,整体带入是解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)--.
【解析】
【分析】(1)根据同分母分式加减法的法则进行计算即可得;
(2)利用多项式乘多项式的法则进行展开,然后再合并同类二次根式即可得.
【详解】(1)= =;
(2)原式=-+-
=--.
【点睛】本题考查了分式的加减法、二次根式的混合运算,熟练掌握同分母分式加减法法则、二次根式混合运算的运算法则是解题的关键.
25、(1);(2)平行四边形的周长是.
【解析】
(1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;
(2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.
【详解】
解:(1) ∵四边形是平行四边形
又∵平分和
.
∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;
(2)在中,.
又
,同理:
∵平行四边形中,,
∴平行四边形的周长是.
本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.
26、证明见解析
【解析】
根据平行四边形性质得出AD∥BC,AD=BC,求出DE=BF,DE∥BF,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴DE=BF,DE∥BF,
∴四边形DEBF是平行四边形,
∴BE=DF.
本题考查了平行四边形的性质和判定;熟练掌握平行四边形的性质,证明四边形DEBF是平行四边形是解决问题的关键.
题号
一
二
三
四
五
总分
得分
年龄/(岁)
13
14
15
16
频数
1
4
5
2
安徽省宣城市2025届九上数学开学质量检测模拟试题【含答案】: 这是一份安徽省宣城市2025届九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省宣城市宣州区水阳中学心初级中学九上数学开学质量检测模拟试题【含答案】: 这是一份2025届安徽省宣城市宣州区水阳中学心初级中学九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省宣城市宣州区雁翅学校数学九上开学复习检测模拟试题【含答案】: 这是一份2024年安徽省宣城市宣州区雁翅学校数学九上开学复习检测模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。