|试卷下载
终身会员
搜索
    上传资料 赚现金
    安徽省含山县2024年九上数学开学学业水平测试试题【含答案】
    立即下载
    加入资料篮
    安徽省含山县2024年九上数学开学学业水平测试试题【含答案】01
    安徽省含山县2024年九上数学开学学业水平测试试题【含答案】02
    安徽省含山县2024年九上数学开学学业水平测试试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省含山县2024年九上数学开学学业水平测试试题【含答案】

    展开
    这是一份安徽省含山县2024年九上数学开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )
    A.3个B.4个C.5个D.无数个
    2、(4分)已知关于x的一元二次方程2x2﹣mx﹣4=0的一个根为m,则m的值是( )
    A.2B.﹣2C.2或﹣2D.任意实数
    3、(4分)如图,已知点A(1,0),点B(b,0)(b>1),点P是第一象限内的动点,且点P的纵坐标为,若△POA和△PAB相似,则符合条件的P点个数是( )
    A.0B.1C.2D.3
    4、(4分)若y+1与x-2成正比例,当时,;则当时,的值是( )
    A.-2B.-1C.0D.1
    5、(4分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为
    A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)
    6、(4分)如图,菱形ABCD中,AB=4,E,F分别是AB、BC的中点,P是AC上一动点,则PF+PE的最小值是( )
    A.3B.C.4D.
    7、(4分)如图,有一个平行四边形和一个正方形,其中点在边上.若,,则的度数为( )
    A.55ºB.60ºC.65ºD.75º
    8、(4分)下列计算正确的是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为__________.
    10、(4分)如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.
    11、(4分)已知是整数,则正整数n的最小值为___
    12、(4分)分式的最简公分母为_____.
    13、(4分)四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为_____度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).
    (1)求此一次函数的表达式;
    (2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.
    15、(8分)先化简,再求值:),其中.
    16、(8分)在平面直角坐标系中,一次函数的图象交轴、轴分别于两点,交直线于。
    (1)求点的坐标;
    (2)若,求的值;
    (3)在(2)的条件下,是线段上一点,轴于,交于,若,求点的坐标。
    17、(10分)育才中学开展了“孝敬父母,从家务事做起”活动,活动后期随机调查了八年级部分学生一周在家做家务的时间,并将结果绘制成如下两幅尚不完整的统计图
    请你根据统计图提供的信息回答下列问题:
    (1)本次调查的学生总数为 人,被调查学生做家务时间的中位数是 小时,众数是 小时;
    (2)请你补全条形统计图;
    (3)若全校八年级共有学生1500人,估计八年级一周做家务的时间为4小时的学生有多少人?
    18、(10分)如图,直线与轴、轴分别相交于点,设是线段上一点,若将△沿折叠,使点恰好落在轴上的点处。求:
    (1)点的坐标;
    (2)直线所对应的函数关系式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.
    20、(4分)a、b、c是△ABC三边的长,化简+|c-a-b|=_______.
    21、(4分)化简:=_______.
    22、(4分)某校组织演讲比赛,从演讲主题、演讲内容、整体表现三个方面对选手进行评分.评分规则按主题占,内容占,整体表现占,计算加权平均数作为选手的比赛成绩.小强的各项成绩如表,他的比赛成绩为__分.
    23、(4分)函数,则当函数值y=8时,自变量x的值是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.
    (1)使三角形三边长为3,,;
    (2)使平行四边形有一锐角为15°,且面积为1.
    25、(10分)已知x=﹣1,y=+1,求x2+xy+y2的值.
    26、(12分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:
    =
    ====
    问题解决:
    (1)请你按照上面的方法分解因式:;
    (2)已知一个长方形的面积为,长为,求这个长方形的宽.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.
    【详解】
    因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,
    观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,
    故选C.
    本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.
    2、C
    【解析】
    根据一元二次方程的解的定义把代入方程得到关于m的方程,然后解关于m的方程即可.
    【详解】
    把x=m代入方程2x2﹣mx﹣4=0得2m2﹣m2﹣4=0,
    解得m=2或m=﹣2,
    故选C.
    本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    3、D
    【解析】
    利用相似三角形的对应边成比例,分①△PAO≌△PAB,②△PAO∽△BAP两种情况分别求解即可.
    【详解】
    ∵点P的纵坐标为,
    ∴点P在直线y=上,
    ①当△PAO≌△PAB时,AB=b﹣1=OA=1,∴b=2,则P(1,);
    ②∵当△PAO∽△BAP时,PA:AB=OA:PA,
    ∴PA2=AB•OA,
    ∴=b﹣1,
    ∴(b﹣8)2=48,
    解得 b=8±4,
    ∴P(1,2+)或(1,2﹣),
    综上所述,符合条件的点P有3个,
    故选D.
    本题考查了相似三角形的性质,正确地分类讨论是解题的关键.
    4、C
    【解析】
    由y+1与x-2成正比例可设y+1=k(x-2),再把时,代入求出k的值,把代入解析式解答即可.
    【详解】
    解:∵y+1与x-2成正比例,
    ∴设y+1=k(x-2),
    ∵时,,
    ∴1+1=k(1-2),解得k=-1,
    ∴y+1=-(x-2),即y=1-x;
    把代入y=1-1=1.
    故选:C.
    本题考查待定系数法求一次函数的解析式,先根据y+1与x-2成正比例设出一此函数的解析式是解题的关键.
    5、C
    【解析】
    试题分析:∵A点坐标为:(2,4),A1(﹣2,1),
    ∴平移和变化规律是:横坐标减4,纵坐标减1.
    ∴点P(2.4,2)平移后的对应点P1为:(-1.6,-1).
    ∵点P1绕点O逆时针旋转180°,得到对应点P2,
    ∴点P1和点P2关于坐标原点对称.
    ∴根据关于原点对称的点的坐标是横、纵坐标都互为相反数的性质,得P2点的坐标为:(1.6,1).
    故选C.
    6、C
    【解析】
    作点E关于AC的对称点E',连接E'F与AC交点为P点,此时EP+PF的值最小;易求E'是AD的中点,证得四边形ABF E'是平行四边形,所以E'F=AB=4,即PF+PE的最小值是4.
    【详解】
    作点E关于AC的对称点E',连接E'F,与AC交点为P点,此时EP+PF的值最小;
    连接EF,
    ∵菱形ABCD,
    ∴AC⊥BD
    ∵E,F分别是边AB,BC的中点,
    ∴E'是AD的中点,
    ∴A E'=AD,BF=BC,E'E⊥EF,
    ∵菱形ABCD,
    ∴AD=BC,AD∥BC,
    ∴A E'=BF,A E'∥BF,
    ∴四边形ABF E'是平行四边形,
    ∴E'F=AB=4,
    即PF+PE的最小值是4.
    故选C.
    本题考查的是轴对称-最短路线问题及菱形的性质,通过轴对称作点E关于AC的对称点是解题的关键.
    7、D
    【解析】
    首先根据,结合已知可得的度数,进而计算的度数.
    【详解】
    解:根据平角的性质可得

    又四边形为正方形


    在三角形DEC中



    四边形为平行四边形

    故选D.
    本题主要考查平角的性质和三角形的内角定理,这些是基本知识,必须熟练掌握.
    8、B
    【解析】
    根据二次根式的运算法则,逐一计算即可得解.
    【详解】
    A选项,,错误;
    B选项,,正确;
    C选项,,错误;
    D选项,,错误;
    故答案为B.
    此题主要考查二次根式的运算,熟练掌握,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、9
    【解析】
    设每轮传染中平均一个人传染的人数为x人,
    那么由题意可知(1+x)2=100,
    解得x=9或-11
    x=-11不符合题意,舍去.
    那么每轮传染中平均一个人传染的人数为9人
    10、
    【解析】
    由图可得,
    正方形ABCD的面积=,
    正方形ABCD的面积=,
    ∴.
    故答案为:.
    11、1
    【解析】
    因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
    【详解】
    ∵,且是整数,
    ∴是整数,即1n是完全平方数;
    ∴n的最小正整数值为1.
    故答案为:1.
    主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
    12、10xy2
    【解析】
    试题解析: 分母分别是 故最简公分母是
    故答案是:
    点睛:确定最简公分母的方法是:
    (1)取各分母系数的最小公倍数;
    (2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
    (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
    13、30或150
    【解析】
    如图1所示:当∠A为钝角,过A作AE⊥BC,
    ∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,
    ∴∠ABC=60°,
    当∠A为锐角时,如图2,过D作DE⊥AB,
    ∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,
    ∴∠A=30°,∴∠ABC=150°,故答案为30或150.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)y=﹣x+5;(2) (4,1)或(﹣4,9).
    【解析】
    (1)设此一次函数的表达式为.由点、的坐标利用待定系数法即可求出该函数的表达式;
    (2)设点的坐标为.根据三角形的面积公式即可列出关于的含绝对值符号的一元一次方程,解方程即可得出结论.
    【详解】
    解:设一次函数的表达式为,
    把点和点代入得:

    解得:,
    此一次函数的表达式为:,
    设点P的坐标为,


    又的面积为10,



    点P的坐标为或.
    本题考查了待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)利用待定系数法求出函数表达式;(2)找出关于的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.
    15、,.
    【解析】
    试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.
    试题解析:原式===,
    当时,原式===.
    考点:分式的化简求值.
    16、(1),;(2);(3)点的坐标为.
    【解析】
    (1)分别代入x=0、y=0求出y、x的值,由此可得出点B. A的坐标;
    (2)设点P的坐标为(x,y),利用一次函数图象上点的坐标特征结合等腰三角形的性质可得出点P的坐标,再由点P在直线y=kx上利用一次函数图象上点的坐标特征可求出k值;
    (3)设点C的坐标为(x,− x+2),则点D的坐标为(x,x),点E的坐标为(x,0),进而可得出CD、DE的长度,由CD=2DE可得出关于x的一元一次方程,解之即可得出结论
    【详解】
    解:(1)当时,,
    当时,,


    (2)设,因为点在直线,且,

    把代入,所以点的坐标是,
    因为点在直线上,所以;
    (3)设点,则,,
    因为,,
    解得:,则,
    所以点的坐标为.
    此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于分别代入x=0、y=0
    17、(1)50,4,5;(2)作图见解析;(3)480人.
    【解析】
    (1)根据统计图可知,做家务达3小时的共10人,占总人数的20%,由此可得出总人数;求出做家务时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据所求结果补全条形统计图即可;
    (2)求出做家务时间为4、6小时的人数;
    (3)求出总人数与做家务时间为4小时的学生人数的百分比的积即可.
    【详解】
    解:(1)∵做家务达3小时的共10人,占总人数的20%,
    ∴=50(人).
    ∵做家务4小时的人数是32%,
    ∴50×32%=16(人),
    ∴男生人数=16﹣8=8(人);
    ∴做家务6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
    ∴做家务3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
    ∴中位数是4小时,众数是5小时.
    故答案为:50,4,5;
    (2)补全图形如图所示.
    (3)∵做家务4小时的人数是32%,
    ∴1500×32%=480(人).
    答:八年级一周做家务时间为4小时的学生大约有480人
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    18、(1);(2)
    【解析】
    (1)先确定点A、点B的坐标,再由AB=AC,可得AC的长度,求出OC的长度,即可得出点C的坐标;
    (2)设OM=m,则CM=BM=8−m,在Rt△OMC中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.
    【详解】
    解:(1)
    令x=0,则y=8,
    令y=0,则x=6,
    ∴A(6,0),B(0,8),
    ∴OA=6,OB=8,AB=10,
    ∵AC=AB=10,
    ∴OC=10−6=4,
    ∴C的坐标为:(−4,0).
    (2)设OM=m,则CM=BM=8−m,
    在Rt△OMC中,m2+42=(8−m)2,
    解得:m=3,
    ∴M的坐标为:(0,3),
    设直线AM的解析式为y=kx+b,
    则,解得:
    故直线AM的解析式为: .
    本题考查了一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,解答本题的关键是数形结合思想的应用,难度一般.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、9
    【解析】
    用总频数减去各组已知频数可得.
    【详解】
    第三组频数是40-10-8-7-6=9
    故答案为:9
    考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.
    20、2a.
    【解析】
    可根据三角形的性质:两边之和大于第三边.依此对原式进行去根号和去绝对值.
    【详解】
    ∵a、b、c是△ABC三边的长
    ∴a+c-b>0,a+b-c>0
    ∴原式=|a-b+c|+|c-a-b|
    =a+c-b+a+b-c
    =2a.
    故答案为:2a.
    考查了二次根式的化简和三角形的三边关系定理.
    21、
    【解析】
    直接利用二次根式的性质化简得出答案.
    【详解】
    解:原式=.
    故答案为:.
    此题主要考查了实数运算,正确掌握二次根式的性质是解题关键.
    22、1
    【解析】
    根据加权平均数的计算公式列式计算可得.
    【详解】
    解:根据题意,得小强的比赛成绩为,
    故答案为1.
    本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.
    23、或4
    【解析】
    把y=8直接代入函数即可求出自变量的值.
    【详解】
    把y=8直接代入函数,得:,
    ∵,

    代入,得:x=4,所以自变量x的值为或4
    本题比较容易,考查求函数值.
    (1)当已知函数解析式时,求函数值就是求代数式的值;
    (2)函数值是唯一的,而对应的自变量可以是多个.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)详见解析
    【解析】
    (1)本题中实际上是长为2宽为2的正方形的对角线长,实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;
    (2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.
    【详解】
    (1)△ABC为所求;
    (2)四边形ABCD为所求.
    关键是确定三角形的边长,然后根据边长画出所求的三角形.
    25、1
    【解析】
    根据x、y的值,可以求得题目中所求式子的值.
    【详解】
    解:∵x=﹣1,y=+1,
    ∴x+y=2,xy=2,
    ∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣2=12﹣2=1.
    本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
    26、(1); (2)长为时这个长方形的宽为
    【解析】
    按照原题解题方法,进而借助完全平方公式以及平方差公式分解因式得出即可.
    【详解】
    (1)
    =
    =
    =
    =
    =
    (2) ∵
    =
    =
    ∴长为时这个长方形的宽为.
    题号





    总分
    得分
    主题
    内容
    整体表现
    85
    92
    90
    相关试卷

    安徽省滁州市2024-2025学年数学九上开学学业水平测试试题【含答案】: 这是一份安徽省滁州市2024-2025学年数学九上开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省2025届九上数学开学学业水平测试试题【含答案】: 这是一份安徽省2025届九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届安徽省六安市三校九上数学开学学业水平测试模拟试题【含答案】: 这是一份2025届安徽省六安市三校九上数学开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map