|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届浙江省温州市乐清市数学九年级第一学期开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届浙江省温州市乐清市数学九年级第一学期开学达标检测模拟试题【含答案】01
    2025届浙江省温州市乐清市数学九年级第一学期开学达标检测模拟试题【含答案】02
    2025届浙江省温州市乐清市数学九年级第一学期开学达标检测模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届浙江省温州市乐清市数学九年级第一学期开学达标检测模拟试题【含答案】

    展开
    这是一份2025届浙江省温州市乐清市数学九年级第一学期开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果,下列各式中不正确的是
    A.B.C.D.
    2、(4分)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )
    A.=-5B.=+5C.=8x-5D.=8x+5
    3、(4分)下列图形具有稳定性的是( )
    A.三角形B.四边形C.五边形D.六边形
    4、(4分)某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是( )
    A.,B.,C.,D.,
    5、(4分)如图,在中,,是边上一条运动的线段(点不与点重合,点不与
    点重合),且,交于点,交于点,在从左至右的运动过
    程中,设BM=x,和的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致
    是( )
    A.B.C.D.
    6、(4分)已知是方程的一个根,那么代数式的值为( )
    A.5B.6C.7D.8
    7、(4分)在中,、分别是、边的中点,若,则的长是( )
    A.9B.5C.6D.4
    8、(4分)如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是( )
    A.这一天中最高气温是26℃
    B.这一天中最高气温与最低气温的差为16℃
    C.这一天中2时至14时之间的气温在逐渐升高
    D.这一天中14时至24时之间的气温在逐渐降低
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
    10、(4分)如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,1),点B落在点B1,则点B1的坐标为_______.
    11、(4分)两条平行线间的距离公式
    一般地;两条平行线间的距离公式
    如:求:两条平行线的距离.
    解:将两方程中的系数化成对应相等的形式,得
    因此,
    两条平行线的距离是____________.
    12、(4分)已知方程组,则x+y的值是____.
    13、(4分)某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设A型包装箱每个可以装件文具,根据题意列方程为 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)直线MN与x轴、y轴分别交于点M、N,并且经过第二、三、四象限,与反比例函数y=(k<0)的图象交于点A、B,过A、B两点分别向x轴、y轴作垂线,垂足为C、D、E、F,AD与BF交于G点.
    (1)比较大小:S矩形ACOD S矩形BEOF(填“>,=,<”).
    (2)求证:①AG•GE=BF•BG;
    ②AM=BN;
    (3)若直线AB的解析式为y=﹣2x﹣2,且AB=3MN,则k的值为 .
    15、(8分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.
    (1)请写出此车间每天所获利润(元)与(人)之间的函数关系式;
    (2)求自变量的取值范围;
    (3)怎样安排生产每天获得的利润最大,最大利润是多少?
    16、(8分)(1)解不等式组
    (2)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值。
    17、(10分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E. F.
    (1)求证:△BCF≌△BA1D.
    (2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.
    18、(10分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)小刚和小强从A.B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,则小强的速度为_____.
    20、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为___.
    21、(4分)若,则的值为________.
    22、(4分)已知函数关系式:,则自变量x的取值范围是 ▲ .
    23、(4分)如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在矩形中,点,分别在,边上,,连接,.求证:.
    25、(10分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.
    (1)求证:四边形EGFH是平行四边形;
    (2)当EG=EH时,连接AF
    ①求证:AF=FC;
    ②若DC=8,AD=4,求AE的长.
    26、(12分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
    (1)求线段CD的长;
    (2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
    (3)当点P在线段AD上运动时,求S与t的函数关系式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.
    【详解】
    、,则,所以选项的结论正确;
    、,则,所以选项的结论错误;
    、,则,所以选项的结论正确;
    、,则,所以选项的结论正确.
    故选.
    本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.
    2、B
    【解析】
    根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.
    【详解】
    根据题意,可列方程:=+5,
    故选B.
    本题考查了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x的倒数间的等量关系,列出方程.
    3、A
    【解析】
    由题意根据三角形具有稳定性解答.
    【详解】
    解:具有稳定性的图形是三角形.
    故选:A.
    本题考查三角形具有稳定性,是基础题,难度小,需熟记.
    4、D
    【解析】
    根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    解:把数据从小到大的顺序排列为:2,1,1,8,10;
    在这一组数据中1是出现次数最多的,故众数是1.
    处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
    故选:D.
    此题考查中位数与众数的意义,掌握基本概念是解决问题的关键
    5、B
    【解析】
    【分析】不妨设BC=2a,∠B=∠C=α,BM=x,则CN=a-x,根据二次函数即可解决问题.
    【详解】不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a−x,
    则有S阴=y=⋅x⋅xtanα+ (a−x)⋅(a−x)tanα
    =tanα(m2+a2−2ax+x2)
    =tanα(2x2−2ax+a2)
    ∴S阴的值先变小后变大,
    故选:B
    【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.
    6、C
    【解析】
    因为a是方程x2−2x−1=0的一个根,所以a2−2a=1,那么代数式2a2−4a+5可化为2(a2−2a)+5,然后把a2−2a=1代入即可.
    【详解】
    解:∵a是方程x2−2x−1=0的一个根,
    ∴a2−2a=1,
    ∴2a2−4a+5
    =2(a2−2a)+5
    =2×1+5
    =7,
    故选:C.
    本题考查了一元一次方程的解以及代数式求值,注意解题中的整体代入思想.
    7、C
    【解析】
    根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.
    【详解】
    解:∵D、E分别是BC、AC边的中点,
    ∴DE是△CAB的中位线,
    ∴AB=2DE=6.
    故选C.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.
    8、A
    【解析】
    根据函数图象的纵坐标,可得气温,根据函数图象的增减性,可得答案.
    【详解】
    A、由纵坐标看出,这一天中最高气温是24℃,错误,故A符合选项;
    B、由纵坐标看出最高气温是24℃,最低气温是8℃,温差是24﹣8=16℃,正确,故B不符合选项;
    C、由函数图象看出,这一天中2时至14时之间的气温在逐渐升高,故C正确;
    D、由函数图象看出,这一天中0时至2时,14时至24时气温在逐渐降低,故D错误;
    故选:A.
    考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.
    【详解】
    解:y=x-4,
    当y=0时,x-4=0,
    解得:x=4,
    即OA=4,
    过B作BC⊥OA于C,
    ∵△OAB是以OA为斜边的等腰直角三角形,
    ∴BC=OC=AC=2,
    即B点的坐标是(2,2),
    设平移的距离为a,
    则B点的对称点B′的坐标为(a+2,2),
    代入y=x-4得:2=(a+2)-4,
    解得:a=4,
    即△OAB平移的距离是4,
    ∴Rt△OAB扫过的面积为:4×2=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.
    10、(1,3)
    【解析】
    先确定点A到点A1的平移方式,然后根据平移方式即可确定点B平移后的点B1的坐标.
    【详解】
    ∵点A(-3,-1)落在A1(0,1)是点A向右移动3个单位,向上移动2个单位.
    ∴点B(-2,1) 向右移动3个单位,向上移动2个单位后的点坐标B1为(1,3).
    故答案为:(1,3).
    本题考查坐标与图形变化——平移.能理解A与A1,B与B1分别是平移前后图形上的两组对应点,它们的平移方式相同是解决此题的关键.
    11、1
    【解析】
    试题分析:认真读题,可知A=3,B=4,C1=-10,C2=-5,代入距离公式为===1.
    12、﹣1.
    【解析】
    根据题意,①-②即可得到关于x+y的值
    【详解】

    ①﹣②得到:﹣3x﹣3y=6,
    ∴x+y=﹣1,
    故答案为﹣1.
    此题考查解二元一次方程组,难度不大
    13、
    【解析】
    单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量+12=所用A型包装箱的数量,由此可得到所求的方程
    【详解】
    解:根据题意,得:
    三、解答题(本大题共5个小题,共48分)
    14、(1)=;(2)①见解析,②见解析;(3)﹣1.
    【解析】
    (1)根据反比例函数的比例系数的几何意义即可作出判断;
    (2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),利用a、b表示出AG、GE、BF、BG的长,即可证得;
    ②求得直线AB的解析式,即可求得M的坐标,即可证明CM=BF,即可证得△ACM≌△NFB,根据全等三角形的对应边相等,即可证得;
    (3)根据AM=BN,且AB=3MN,可以得到AM=BN=MN,则OF=2ON,OM=BF,在y=﹣2x﹣2中,求得M、N的坐标,即可求得B的坐标,代入反比例函数解析式即可求得k的值.
    【详解】
    (1)根据反比例函数k的几何意义可得:S矩形ACOD=S矩形BEOF=|k|,
    故答案为:=;
    (2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),
    则AG=b﹣a,GE=,BF=b,BG=﹣,
    则AG•GE=(b﹣a)•=,
    BF•BG=b(﹣)=,
    ∴AG•GE=BF•BG;
    ②设过A、B的直线的解析式是y=mx+n,则,
    解得:,
    则函数的解析式是:y=﹣x+,
    令y=0,解得:x=a+b,
    则M的横坐标是a+b,
    ∴CM=a+b﹣a=b,
    ∴CM=BF,
    则△ACM≌△NFB,
    ∴AM=BN;
    (3)∵AM=BN,且AB=3MN,
    ∴AM=BN=MN,
    ∴ON=NF,
    在y=﹣2x﹣2中,令x=0,解得:y=﹣2,
    则ON=2,
    令y=0,解得:x=﹣1,则OM=1,
    ∴OF=2ON=1,OM=BF=1
    ∴B的坐标是(1,﹣1),
    把(1,﹣1)代入y=中,得:k=﹣1,
    故答案为:﹣1.
    本题考查的是反比例函数与几何综合题,涉及了反比例函数k的几何意义,待定系数法,全等三角形的判定与性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
    15、(1);(2)(3)安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
    【解析】
    (1)整个车间所获利润=甲种零件所获总利润+乙种零件所获总利润;
    (2)根据零件零件个数均为非负整数以及乙种零件的个数不超过甲种零件个数的一半可得自变量的取值范围;
    (3)根据(1)得到的函数关系式可得当x取最小整数值时所获利润最大.
    解答
    【详解】
    解:(1)此车间每天所获利润(元)与(人)之间的函数关系式是

    (2)由
    解得
    因为为整数,所以
    (3)随的增大而减小,
    当时,.
    即安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
    本题考查一次函数的性质、一元一次不等式组的应用和一次函数的应用,解题的关键是熟练掌握一次函数的性质、一元一次不等式组的应用和一次函数的应用.
    16、(1)﹣2<x≤1(2)见解析
    【解析】
    (1)通过计算得出不等式组中1-3(x-1)<8-x的解集为x>﹣2,—+3≥x+1的解集为x≤1,得出不等式组的解集为﹣2<x≤1.
    (2)先化简得出结果,要想式分式有意义,则分式的分母不能为0,即x≠0、1、3.则x只能取0,1,2,3中的2,将2带入结果中即可得出最终结果.
    【详解】
    (1) 由1-3(x-1)<8-x得:
    1-3x+3<8-x,
    1+3-8<-x+3x,
    ﹣4<2x,
    则x>﹣2.
    由+3≥x+1得:
    x-3+6≥2x+2
    ﹣3+6-2≥2x-x
    则x≤1
    所以不等式组的解集为﹣2<x≤1.
    (2)÷-
    =× -
    =× -
    =+
    =+
    =2
    要想使分式有意义,必须使分式的分母不能为0,
    除法中除数不能为0,
    即+3≠0、()≠0、a-3≠0、a-1≠0,
    故a≠0、-3、1、3.
    所以a只能取0、1、2、3中的2,
    将2代入化简结果2a得:
    2a=2×2,
    =4.
    本题主要考查解不等式组以及分式的化简求值.易错点在于第(2)问的化简求值,往往忽略了分式有意义的条件.
    17、 (1)证明见解析(2)四边形A1BCE是菱形
    【解析】
    (1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.
    【详解】
    (1)证明:∵△ABC是等腰三角形,
    ∴AB=BC,∠A=∠C,
    ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
    ∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
    在△BCF与△BA1D中,

    ∴△BCF≌△BA1D;
    (2)解:四边形A1BCE是菱形,
    ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
    ∴∠A1=∠A,
    ∵∠ADE=∠A1DB,
    ∴∠AED=∠A1BD=α,
    ∴∠DEC=180°﹣α,
    ∵∠C=α,
    ∴∠A1=α,
    ∴∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,
    ∴∠A1=∠C,∠A1BC=∠A1EC,
    ∴四边形A1BCE是平行四边形,
    ∴A1B=BC,
    ∴四边形A1BCE是菱形.
    考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.
    18、详见解析
    【解析】
    作∠DAB=∠ ,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.
    【详解】
    如图所示.
    本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4 km/h.
    【解析】
    此题为相遇问题,可根据相遇时甲乙所用时间相等,且甲乙所行路程之和为A,B两地距离,从而列出方程求出解.
    【详解】
    设小刚的速度为xkm/h,
    则相遇时小刚走了2xkm,小强走了(2x−24)km,
    由题意得,2x−24=0.5x,
    解得:x=16,
    则小强的速度为:(2×16−24)÷2=4(km/h),
    故答案为:4 km/h.
    此题考查一元一次方程的应用,解题关键在于根据题意列出方程.
    20、
    【解析】
    由菱形的对角线互相平分且垂直可知菱形的面积等于小三角形面积的四倍可求出DO,根据勾股定理可求出AD,然后再根据直角三角形中斜边的中线等于斜边的一半,求解即可.
    【详解】
    解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4 ,
    ∴AO=2,DO=,∠AOD=90°,
    ∴AD=3,
    ∵E为AD的中点,
    ∴OE的长为:AD=.
    故答案为: .
    菱形的对角线的性质、勾股定理、直角三角形的性质都是本题的考点,根据题意求出DO和AD的长是解题的关键.
    21、
    【解析】
    根据比例设a=2k,b=3k,然后代入比例式进行计算即可得解.
    【详解】
    ∵,
    ∴设a=2k,b=3k,
    ∴ .
    故答案为:
    此题考查比例的性质,掌握运算法则是解题关键
    22、
    【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
    23、4.8cm.
    【解析】
    根据菱形的性质可得AB=5cm,根据菱形的面积公式可得S菱形ABCD=AC•BD=AB•DH,即DH==4.8cm.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,
    ∴AB=5cm,
    ∴S菱形ABCD=AC•BD=AB•DH,
    ∴DH==4.8cm.
    本题考查了菱形的边长问题,掌握菱形的性质、菱形的面积公式是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.
    【详解】
    证明:∵四边形ABCD是矩形,
    ∴DC∥AB,DC=AB,
    ∴CF∥AE,
    ∵DF=BE,
    ∴CF=AE,
    ∴四边形AFCE是平行四边形,
    ∴AF=CE.
    本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.
    25、(1)见解析;(2)①见解析,②1.
    【解析】
    (1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
    (2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;
    ②设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
    【详解】
    (1)∵矩形ABCD中,AB∥CD,
    ∴∠FCH=∠EAG,
    又∵CD=AB,BE=DF,
    ∴CF=AE,
    又∵CH=AG,∠FCH=∠EAG
    ∴△AEG≌△CFH(SAS),
    ∴GE=FH,∠CHF=∠AGE,
    ∴∠FHG=∠EGH,
    ∴FH∥GE,
    ∴四边形EGFH是平行四边形;
    (2)①如图,连接AF,
    ∵EG=EH,四边形EGFH是平行四边形,
    ∴四边形GFHE为菱形,
    ∴EF垂直平分GH,
    又∵AG=CH,
    ∴EF垂直平分AC,
    ∴AF=CF;
    ②设AE=x,则FC=AF=x,DF=8-x,
    在Rt△ADF中,AD2+DF2=AF2,
    ∴42+(8-x)2=x2,
    解得x=1,
    ∴AE=1.
    本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键
    26、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时, S=2;当<t≤时,S=.
    【解析】
    (1)由勾股定理得出AB=10,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
    (2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可;
    (3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PNYH,如图4所示,②当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2,③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
    【详解】
    解:(1)∵∠ACB=90°,AC=8,BC=1,
    ∴AB==10,
    ∵S△ABC=AC•BC=AB•CD,
    ∴AC•BC=AB•CD,即:8×1=10×CD,
    ∴CD=;
    (2)在Rt△ADC中,AD=,BD=AB−AD=,
    当点N在线段CD上时,如图1所示:
    ∵矩形PQMN,PQ总保持与AC垂直,
    ∴PN∥AC,
    ∴∠NPD=∠CAD,
    ∵∠PDN=∠ADC,
    ∴△PDN∽△ADC,
    ∴,即:,
    解得:PD=,
    ∴t=AD−PD=;
    当点Q在线段CD上时,如图2所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△DPQ∽△DBC,
    ∴,即:,
    解得:DP=,
    ∴t=AD+DP=,
    ∴当矩形PQMN与线段CD有公共点时,t的取值范围为:≤t≤;
    (3)当Q在AC上时,如图3所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△APQ∽△ABC,
    ∴,即:,
    解得:AP=,
    当0<t<时,重叠部分是矩形PNYH,如图4所示:
    ∵PQ∥BC,
    ∴△APH∽△ABC,
    ∴,即:,
    ∴PH=,
    ∴S=PH•PN=;
    当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2;
    当<t≤时,如图5中重叠部分是五边形PQMJI,
    易得△PDI∽△ACB∽△JNI,
    ∴,即:,
    ∴PI=(−t)•,
    ∴,即:,
    ∴JN=,
    S=S矩形PNMQ−S△JIN=2−·()·[1−(−t)•]=.
    本题属于四边形综合题,考查了勾股定理解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届浙江省乐清市九年级数学第一学期开学复习检测试题【含答案】: 这是一份2025届浙江省乐清市九年级数学第一学期开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省舟山市九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024年浙江省舟山市九年级数学第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】: 这是一份2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map