2025届浙江省宁波七中学教育集团数学九上开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为( ).
A.B.C.16D.
2、(4分)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( )
A.B.C.D.
3、(4分)下列式子从左至右变形不正确的是( )
A.=B.=
C.=-D.=
4、(4分)下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )
A.0个B.1个 C.2个D.3个
5、(4分)如图,已知一次函数的图象与轴,轴分别交于点(2,0),点(0,3).有下列结论:①关于的方程的解为;②当时,;③当时,. 其中正确的是( )
A.①②B.①③C.②③D.①③②
6、(4分)我国“一带一路”战略给沿线国家和地区带来了很大的经济效益,沿线某地区居民2017年年人均收入为3800美元,预计2019年年人均收入将达到5000美元,设2017年到2019年该地区居民年人均收入平均增长率为,可列方程为( )
A.B.
C. D.
7、(4分)下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.
A.1B.2C.3D.4
8、(4分)估计的值在下列哪两个整数之间( )
A.6和7之间B.7和8之间C.8和9之间D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)菱形ABCD的对角线cm,,则其面积等于______.
10、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.
11、(4分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=9,则EF的长为______.
12、(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).
13、(4分)如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程
(1)
(2)
(3)
(4) (公式法)
15、(8分)已知关于x的方程x2-(m+2)x+(2m-1)=1.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.
16、(8分)(阅读材料)
解方程:.
解:设,则原方程变为.
解得,,.
当时,,解得.
当时,,解得.
所以,原方程的解为,,,.
(问题解决)
利用上述方法,解方程:.
17、(10分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.
(1)取出白球的概率是多少?
(2)如果袋中的白球有18只,那么袋中的红球有多少只?
18、(10分)在生活与工作都离不开手机和电脑的今天,青少年近视、散光等眼问题日趋严重,为宣传2018全国爱眼日(6月6日),增强大众近视防控意识,某青少年视力矫正中心举办了主题为“永康降度还您一双明亮的眼睛”的降度明星大赛,现根据大赛公布的结果,将所有参赛孩子双眼降度之和(含近视和散光)情况绘制成了如下的统计表:
(1)求参加降度明星大赛的孩子共有多少人?
(2)求出所有参赛孩子所降度数的众数、中位数和平均数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:x2﹣x=______.
20、(4分)若分式方程 无解,则等于___________
21、(4分)一组数据:2,3,4,5,6的方差是 ____
22、(4分)已知,则代数式的值为_____.
23、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是 ,证明你的结论;
(2)当四边形ABCD的对角线满足 条件时,四边形EFGH是矩形;
(3)你学过的哪种特殊四边形的中点四边形是矩形? .(不证明)
25、(10分)如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).
(1)求m,n的值;
(2)求ΔABC的面积;
(3)请根据图象直接写出:当y1
26、(12分)如图,在中,,平分,垂直平分于点,若,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.
【详解】
∵菱形ABCD中,∠D=135°,
∴∠BCD=45°,
∵BE⊥CD于E,FG⊥BC于G,
∴△BFG与△BEC是等腰直角三角形,
∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
CF=CF,
∴△CGF≌△CEF(AAS),
∴FG=FE,CG=CE,
设BG=FG=EF=x,
∴BF=x,
∵△BFG的周长为4,
∴x+x+x=4,
∴x=4-2,
∴BE=2,
∴BC=BE=4,
∴菱形ABCD的面积=4×2=8,
故选:B.
考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.
2、B
【解析】
试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
小强
小华 石头 剪刀 布
石头 (石头,石头) (石头,剪刀) (石头,布)
剪刀 (剪刀,石头) (剪刀,剪刀) (剪刀,布)
布 (布,石头) (布,剪刀) (布,布)
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小颖平局的概率为:.
故选B.
考点:概率公式.
3、A
【解析】
根据分式的基本性质逐项判断即得答案.
【详解】
解:A、由分式的基本性质可知:≠,所以本选项符合题意;
B、=,变形正确,所以本选项不符合题意;
C、=-,变形正确,所以本选项不符合题意;
D、,变形正确,所以本选项不符合题意.
故选:A.
本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
4、D
【解析】
①实数和数轴上的点是一一对应的,正确;
②无理数是开方开不尽的数,错误;
③负数没有立方根,错误;
④16的平方根是±4,用式子表示是±=±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.
错误的一共有3个,故选D.
5、A
【解析】
根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.
【详解】
由图象得:①关于x的方程kx+b=0的解为x=2,故①正确;
②当x>2时,y<0,故②正确;
③当x<0时,y>3,故③错误;
故选:A
本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x为未知数的一元一次方程,它都可以转化为kx+b=0(k≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b值为0时,求自变量的值.
6、C
【解析】
设2017年到2019年该地区居民年人均收入增长率为x,根据2017年和2019年该地区居民年人均收入,即可得出关于x的一元二次方程.
【详解】
解:设2017年到2019年该地区居民年人均收入增长率为x,
依题意,得:3800(1+x)2=5000,
故选:C
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
7、C
【解析】
根据立方根的概念即可求出答案.
【详解】
①2是8的立方根,故①正确;
②4是64的立方根,故②错误;
③是的立方根,故③正确;
④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.
故选C.
本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.
8、B
【解析】
先判断在2和3之间,然后再根据不等式的性质判断即可.
【详解】
解:,
∵2<<3,
∴7<10﹣<8,
即的值在7和8之间.
故选B.
无理数的估算是本题的考点,判断出在2和3之间时解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。
【详解】
解:菱形ABCD的面积=
=
=
本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。
10、1
【解析】
根据题意作AD⊥x轴于D,设PB⊥x轴于E,,设出P点的坐标,再结合S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,代入计算即可.
【详解】
解:作AD⊥x轴于D,设PB⊥x轴于E,
∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,
∴设P(m,),则A(2m,),B(m,),
∵点A、B在函数y=(x>0)的图象上,
∴S△OBE=S△OAD,
∵S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,
∴S△AOB=(+)(2m﹣m)=1,
故答案为1.
本题主要考查反比例函数的面积问题,这是考试的重点知识,往往结合几何问题求解.
11、1
【解析】
利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长
【详解】
解:∵∠AFB=90°,D为AB的中点,
∴DF=AB=1.5,
∵DE为△ABC的中位线,
∴DE=BC=4.5,
∴EF=DE-DF=1,
故答案为:1.
本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
12、AC⊥BC或∠AOB=90°或AB=BC(填一个即可).
【解析】
试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.
考点:菱形的判定.
13、
【解析】
根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.
【详解】
∵π•OA42=π•OA12,
∴O A42=OA12,
∴O A4=OA1;
∵π•OA32=π•OA12,
∴O A32=OA12,
∴O A3=OA1;
∵π•OA22=π•OA12,
∴O A22=OA12,
∴O A2=OA1;
∵OA1=R
因此这三个圆的半径为:O A2=R,O A3=R,O A4=R.
∴OA4:OA3:OA2:OA1=
由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=
故答案为:(1);(2).
本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) x=-(2)x=1 (3)x1=6,x2=0(4) x1=2,x2=-
【解析】
(1)根据分式方程的解法去分母化为整式方程,故可求解;
(2)根据分式方程的解法去分母化为整式方程,故可求解;
(3)根据直接开平方法即可求解
(4)先化为一般式,再利用公式法即可求解.
【详解】
(1)
x=-
经检验,x=-是原方程的解;
(2)
x-5=8x-12
-7x=-7
x=1
经检验,x=1是原方程的解;
(3)
x-3=±3
x-3=3,x-3=-3
x1=6,x2=0;
(4)
这里a=2,b=-1,c=-6
∴△=b2-4ac=1+4×2×6=49>0
∴x==
∴x1=2,x2=-.
此题主要考查分式方程与一元二次方程的求解,解题的关键是熟知其解法.
15、(1)见详解;(2)4+或4+.
【解析】
(1)根据关于x的方程x2-(m+2)x+(2m-1)=1的根的判别式的符号来证明结论.
(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.
【详解】
解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在实数范围内,m无论取何值,(m-2)2+4≥4>1,即△>1.
∴关于x的方程x2-(m+2)x+(2m-1)=1恒有两个不相等的实数根.
(2)∵此方程的一个根是1,
∴12-1×(m+2)+(2m-1)=1,解得,m=2,
则方程的另一根为:m+2-1=2+1=3.
①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+.
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+.
16、,,,
【解析】
先变形,再仿照阅读材料换元,求出m的值,再代入求出x即可.
【详解】
解:原方程变为.
设,则原方程变为.
解得,,.
当时,,解得
当时,,解得或3.
所以,原方程的解为,,,.
本题考查解一元二次方程和解高次方程,能够正确换元是解此题的关键.
17、 (1)(2)袋中的红球有6只.
【解析】
(1)根据取出白球的概率是1-取出红球的概率即可求出;
(2)设有红球x个,则总求出为(x+18)个,再根据红球的概率即可列出方程,从而解出x.
【详解】
解:(1)=
(2)设袋中的红球有只,
则有
解得
所以,袋中的红球有6只.
18、(1)60人;(2)众数为300、中位数为250、平均数为1.
【解析】
(1)将统计表中各项人数相加求和即参加降度明星大赛的孩子人数;
(2)出现次数最多的数为众数,将数据从小到大排序后,第30和第31个孩子的降度平均数为中位数;利用加权平均数的计算公式求平均数即可.
【详解】
解:(1)
答:参加降度明星大赛的孩子共有60人.
(2)由表可知:众数:300(度)
中位数:(度)
平均数:(度)
∴众数为300、中位数为250、平均数为1.
本题考查众数,中位数,加权平均数的求解,掌握概念正确理解计算是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
20、
【解析】
先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.
【详解】
解:,
去分母得:,
所以:,
因为:方程的增根是,
所以:此时,
故答案为:.
本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.
21、2
【解析】
=4,∴S2= [(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.
22、3
【解析】
把已知值代入,根据二次根式的性质计算化简,灵活运用完全平方公式.
【详解】
解:因为
所以
二次根式的化简求值.
23、13
【解析】
试题解析:
故答案为
点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
二、解答题(本大题共3个小题,共30分)
24、(1)平行四边形;(2)互相垂直;(3)菱形.
【解析】
分析:(1)、连接BD,根据三角形中位线的性质得出EH∥FG,EH=FG,从而得出平行四边形;(2)、首先根据三角形中位线的性质得出平行四边形,根据对角线垂直得出一个角为直角,从而得出矩形;(3)、根据菱形的性质和三角形中位线的性质得出平行四边形,然后根据对角线垂直得出矩形.
详解:(1)证明:连结BD.
∵E、H分别是AB、AD中点, ∴EH∥BD,EH=BD,
同理FG∥BD,FG=BD, ∴EH∥FG,EH=FG, ∴四边形EFGH是平行四边形
(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.
理由如下:如图,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点, ∴EH∥BD,HG∥AC,
∵AC⊥BD, ∴EH⊥HG, 又∵四边形EFGH是平行四边形, ∴平行四边形EFGH是矩形;
(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD, ∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形.∵四边形ABCD是菱形, ∴AC⊥BD,∵EH∥BD,HG∥AC,
∴EH⊥HG, ∴平行四边形EFGH是矩形.
点睛:本题主要考查的就是三角形中位线的性质以及特殊平行四边形的判定,属于中等难度题型.三角形的中位线平行且等于第三边的一半.解决这个问题的关键就是要明确特殊平行四边形的判定定理.
25、(1)n=1,m=2;(2)2;(3)当y1
【解析】
(1)利用待定系数法把点坐标代入可算出的值,然后再把点坐标代入可算出的值;
(2)首先根据函数解析式计算出两点坐标,然后再根据三点坐标求出的面积;
(3)根据点坐标,结合一次函数与不等式的关系可得出答案.
【详解】
解:(1)∵点C(1,n)在直线y1=-2x+3上,∴n=-2×1+3=1,∴C(1,1),∵y2=mx-1过点C(1,1),∴1=m-1,解得m=2. (2)当x=0时,y1=-2x+3=3,则A(0,3),当x=0时,y2=2x-1=-1,则B(0,-1),∴ΔABC的面积为×4×1=2.
(3)∵C(1,1),∴当y1
此题主要考查了两函数图象相交问题,以及一次函数与不等式的关系,关键是认真分析图象,能从图象中得到正确信息.
26、的长为.
【解析】
根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.
【详解】
解:设,则,
平分,,,
,
又垂直平分,
,
,
在中,,
,
,即,
解得.
即的长为.
本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.
题号
一
二
三
四
五
总分
得分
所降度数(度)
100
200
300
400
500
600
人数(人)
12
18
24
4
1
1
2024年浙江省宁波市宁波七中学教育集团数学九上开学质量检测试题【含答案】: 这是一份2024年浙江省宁波市宁波七中学教育集团数学九上开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
2024-2025学年浙江省宁波市海曙区数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年浙江省宁波市海曙区数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省石家庄市28中学教育集团数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年河北省石家庄市28中学教育集团数学九上开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。