终身会员
搜索
    上传资料 赚现金

    2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】

    立即下载
    加入资料篮
    2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】第1页
    2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】第2页
    2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】

    展开

    这是一份2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)解不等式,解题依据错误的是( )
    解:①去分母,得5(x+2)<3(2x﹣1)
    ②去括号,得5x+10<6x﹣3
    ③移项,得5x﹣6x<﹣3﹣10
    ④合并同类项,得﹣x<﹣13
    ⑤系数化1,得x>13
    A.②去括号法则B.③不等式的基本性质1
    C.④合并同类项法则D.⑤不等式的基本性质2
    2、(4分)一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)与放水时间t(分)有如下关系:
    下列结论中正确的是
    A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3
    C.每分钟的放水量是2m3D.y与t之间的关系式为y=38-2t
    3、(4分)下列各式中计算正确的是( )
    A.B.C.D.
    4、(4分)每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为 ( )
    A.元B.元C.元D.元
    5、(4分)如图,矩形中,,,点是的中点,平分交于点,过点作于点,连接,则的长为( )
    A.3B.4C.5D.6
    6、(4分)已知a<b,则下列不等式正确的是( )
    A.a﹣3<b﹣3B.>C.﹣a<﹣bD.6a>6b
    7、(4分)A、B两地相距20千米,甲、乙两人都从A地去B地,图中和分别表示甲、乙两人所走路程(千米)与时刻(小时)之间的关系.下列说法:
    ①乙晚出发1小时;
    ②乙出发3小时后追上甲;
    ③甲的速度是4千米/小时;
    ④乙先到达B地.
    其中正确的个数是( )
    A.1B.2C.3D.4
    8、(4分)下列计算中,正确的是( )
    A.+=B.×=3
    C.÷=3D.=﹣3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
    10、(4分)如图,沿折痕AE折叠矩形ABCD的一边,使点D落在BC边上一点F处.若AB=8,且△ABF的面积为24,则EC的长为__.
    11、(4分)若方程有增根,则m的值为___________;
    12、(4分)如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是______.
    13、(4分)计算:=________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)4月23日世界读书日之际,总书记提倡和鼓励大家多读书、读好书.在接受俄罗斯电视台专访时,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”为响应号召,建设书香校园,某初级中学对本校初一、初二两个年级的学生进行了课外阅读知识水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
    (收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下
    (整理数据)按如下分段整理样本数据:
    (分析数据)对样本数据进行如下统计:
    (得出结论)
    (1)根据统计,表格中a、b、c、d的值分别是______、______、______、______.
    (2)若该校初一、初二年级的学生人数分别为1000人和1200人,请估计该校初一、初二年级这次考试成绩90分以上的总人数.
    15、(8分)如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上的数大1,则我们称这样的自然数叫“美数”,例如:123,3456,67,…都是“美数”.
    (1)若某个三位“美数”恰好等于其个位的76倍,这个“美数”为 .
    (2)证明:任意一个四位“美数”减去任意一个两位“美数”之差再减去1得到的结果定能被11整除;
    (3)如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,则我们称这样的自然数叫“妙数”,若任意一个十位为为整数)的两位“妙数”和任意一个个位为为整数)的两位“美数”之和为55,则称两位数为“美妙数”,并把这个“美妙数”记为,则求的最大值.
    16、(8分)某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:
    (1)求yB关于x的函数解析式;
    (2)如果A,B两种机器人连续搬运5小时,那么B种机器人比A种机器人多搬运了多少千克?
    17、(10分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.
    (1)点P在x轴上;
    (2)点P的纵坐标比横坐标大3;
    (3)点P在过点A(2,-4)且与y轴平行的直线上.
    18、(10分)如图,在平行四边形中,的平分线交于点,的平分线交于点.
    (1)若,,求的长.
    (2)求证:四边形是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x0),
    ∴可选取k=1,
    再把点(3,﹣1)代入:﹣1=3+b,
    解得:b=-4,
    ∴一次函数解析式为y=x-4,
    故答案为:y=x-4(答案不唯一).
    本题考查一次函数的性质,掌握一次函数图象与系数的关系是解题的关键.
    10、2
    【解析】
    先依据△ABF的面积为24,求出BF的长,再根据勾股定理求出AF,也就是BC的长,接下来,求得CF的长,设EC=x,则FE=DE=8﹣x,在△EFC中,依据勾股定理列出关于x的方程,从而可求得EC的长.
    【详解】
    解:∵AB=8,S△ABF=24
    ∴BF=1.
    ∵在Rt△ABF中,AF==10,
    ∴AD=AF=BC=10
    ∴CF=10﹣1=4
    设EC=x,则EF=DE=8﹣x.
    在Rt△ECF中,EF2=CF2+CE2,即(8﹣x)2=x2+42,解得,x=2.
    ∴CE=2.
    故答案为2.
    本题综合考查了翻折的性质、矩形的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.
    11、-4或6
    【解析】
    方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.
    【详解】
    方程两边同乘(x-2)(x+2),
    得2(x+2)+mx=3(x-2)
    ∵原方程有增根,
    ∴最简公分母(x+2)(x-2)=0,
    解得x=-2或2,
    当x=-2时,m=6,
    当x=2时,m=-4,
    故答案为:-4或6.
    本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    12、2≤MN≤5
    【解析】
    根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.
    【详解】
    ∵点P,M分别是CD,DE的中点,
    ∴PM=CE,PM∥CE,
    ∵点P,N分别是DC,BC的中点,
    ∴PN=BD,PN∥BD,
    ∵△ABC,△ADE均为等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∴△ABD≌△ACE(SAS),
    ∴BD=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    ∵PM∥CE,
    ∴∠DPM=∠DCE,
    ∵PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    ∴PM=PN=BD,
    ∴MN=BD,
    ∴点D在AB上时,BD最小,
    ∴BD=AB-AD=4,MN的最小值2;
    点D在BA延长线上时,BD最大,
    ∴BD=AB+AD=10,MN的最大值为5,
    ∴线段MN的取值范围是2≤MN≤5.
    故答案为:2≤MN≤5.
    此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.
    13、7
    【解析】
    根据平方差公式展开,再开出即可;
    【详解】
    =
    =
    =7.
    故答案为7.
    本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.
    三、解答题(本大题共5个小题,共48分)
    14、(1)4,8,87,1;(2)800人.
    【解析】
    (1)利用收集的数据以及中位数,众数的定义即可解决问题.
    (2)利用样本估计总体的思想解决问题即可.
    【详解】
    解:(1)由数据可知初二年级60≤x<70的有4人,80≤x<90有8人,初一年级20人,中间两个数是86,1,故中位数==87,初二年级20人,出现次数最多的是1.故众数是1.由题意a=4,b=8,c=87,d=1.
    故答案为:4,8,87,1.
    (2)初一年级成绩90分以上的人数为1000×=300(人),
    初二年级成绩90分以上的人数为1200×=500(人)
    300+500=800(人)
    答:初一、初二年级这次考试成绩90分以上的总人数为800人.
    本题考查方差,平均数,中位数,众数,样本估计总体等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.
    15、 (1)456 (2)见解析 (3)42
    【解析】
    (1)设这个“美数”的个位数为x,则根据题意可得方程,解方程求出x的值即可得出答案.
    (2)设四位“美数”的个位为x、两位“美数””的个位为y,分别表示出四位“美数”和两位“美数”,再将四位“美数”减去任意一个两位“美数””之差再加上1的结果除以11判断结果是否为整数即可;
    (3)根据题意两个数之和为55得出二元一次方程,化简方程,再根据x与y的取值范围,即可求出最大值.
    【详解】
    (1)设其个位数为x,则
    解得:x=6
    则这个“美数”为:
    (2)设四位“美数”的个位为x、两位“美数””的个位为y,
    根据题意得:

    =
    =
    即:式子结果是11的倍数
    (3)根据题意:




    由10x+y可得x越大越大,即y为最小值时的值最大
    则x=4,y=2时的值最大
    的最大值为
    本题主要考查二元一次方程的应用,解题关键是设个位数的数为x得出方程并解答.
    16、 (1) yB=1x-1(1≤x≤6).(2)如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.
    【解析】
    试题分析:(1)设yB关于x的函数解析式为yB=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;
    (2)设yA关于x的解析式为yA=k1x.将(3,180)代入可求得yA关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得yA,yB的值,最后求得yA与yB的差即可.
    试题解析:(1)设yB关于x的函数解析式为yB=kx+b(k≠0).
    将点(1,0),(3,180)代入,得,
    解得:k=1,b=-1.
    ∴yB关于x的函数解析式为yB=1x-1(1≤x≤6).
    (2)设yA关于x的函数解析式为yA=k1x.
    根据题意,得3k1=180.解得k1=60.
    ∴yA=60x.
    当x=5时,yA=60×5=300;
    当x=6时,yB=1×6-1=450.
    450-300=150(千克).
    答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.
    17、(1)(6,0);(2)(-12,-9); (3)(2,-2)
    【解析】试题分析:(1)让纵坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让横坐标为2求得m的值,代入点P的坐标即可求解.
    试题解析:
    (1))点P在x轴上,故纵坐标为0,所以m-1=0,m=1,点P的坐标(6,0);
    (2)因为点P的纵坐标比横坐标大3,故(m -1)-(2m+4)=3,m=-8,点P的坐标(-12,-9);
    (3) 点P在过A(2,-4)点,且与y轴平行的直线上,所以点P横坐标与A(2,-4)相同,即2m+4=2,m=-1,点P的坐标(2,-2)
    18、(1);(2)证明见解析.
    【解析】
    (1)根据等腰三角形的性质即可求解;
    (2)根据角平分线的性质及平行线的判定得到,再根据即可证明.
    【详解】
    (1)解:∵四边形为平形四边形

    ∵平分


    ∴,

    (2)证明:∵四边形为平行四边形

    ∵平分
    又∴


    ∴四边形为平行四边形
    此题主要考查平行四边形的性质与判定,解题的关键是熟知平行四边形的性质定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.
    【详解】
    解:两个条直线的交点坐标为A(1,3),
    当x<1时,
    直线y=ax+4在直线y=3x的上方,
    当x>1时,
    直线y=ax+4在直线y=3x的下方,
    故不等式3x

    相关试卷

    2024年天津市蓟州区九上数学开学监测模拟试题【含答案】:

    这是一份2024年天津市蓟州区九上数学开学监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年天津市蓟州区第三联合区数学九年级第一学期开学达标检测试题【含答案】:

    这是一份2024年天津市蓟州区第三联合区数学九年级第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年天津市蓟州区上仓镇初级中学数学九年级第一学期开学统考试题【含答案】:

    这是一份2024-2025学年天津市蓟州区上仓镇初级中学数学九年级第一学期开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map