2025届青岛市重点中学九上数学开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列性质中,平行四边形不一定具备的是( )
A.邻角互补B.对角互补
C.对边相等D.对角线互相平分
2、(4分)一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是( )
A.前一组数据的中位数是200
B.前一组数据的众数是200
C.后一组数据的平均数等于前一组数据的平均数减去200
D.后一组数据的方差等于前一组数据的方差减去200
3、(4分)一个三角形的三边分别是6、8、10,则它的面积是( )
A.24B.48C.30D.60
4、(4分)用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是 ( )
A.(1)(2)(4)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(3)
5、(4分)如图,在Rt△ABC中,∠A=90°,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,若AE=1,则BE的长为( )
A.2B.C.D.1
6、(4分)下列各组数是勾股数的是( )
A.6,7,8B.1,,2
C.5,4,3D.0.3,0.4,0.5
7、(4分)若分式的值为 0,则 x 的取值为( )
A.x 1B.x 1C.x 1D.无法确定
8、(4分)如图,有一张直角三角形纸片,两条直角边,,将折叠,使点和点重合,折痕为,则的长为( )
A.1.8B.2.5C.3D.3.75
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数()经过点,则不等式的解集为__________.
10、(4分)如图,点,是的边,上的点,已知,,分别是,,中点,连接BE,FH,若BD=8,CE=6,,∠FGH=90°,则FH长为_______.
11、(4分)小数0.00002l用科学记数法表示为_____.
12、(4分)有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是 .
13、(4分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形AECF中,B,D是直线EF上的两点,BE=DF,连接AB,BC,AD,DC.求证:四边形ABCD是平行四边形.
15、(8分)解不等式:
16、(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.
(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.
17、(10分)下面是某公司16名员工每人所创的年利润(单位:万元)
5 3 3 5 5 10 8 5 3 5 5 8 3 5 8 5
(1)完成下列表格:
(2)这个公司平均每人所创年利润是多少?
18、(10分)某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.
20、(4分)计算的结果是_____。
21、(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
22、(4分)如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________. _________.
23、(4分)如图,在菱形ABCD中,∠C=60º,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线l1:y=﹣2x与直线l2:y=kx+b在同一平面直角坐标系内交于点P.
(1)直接写出不等式﹣2x>kx+b的解集______;
(2)设直线l2与x轴交于点A,△OAP的面积为12,求l2的表达式.
25、(10分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:
(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?
26、(12分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形边、角及对角线的性质进行解答即可.
【详解】
平行四边形的对角相等、邻角互补、对边相等、对角线互相平分.故选B.
本题主要考查的是平行四边形的性质,属于基础题型.理解平行四边形的性质是解决这个问题的关键所在.
2、D
【解析】
由中位数、众数、平均数及方差的意义逐一判断可得.
【详解】
解:A.前一组数据的中位数是200,正确,此选项不符合题意;
B.前一组数据的众数是200,正确,此选项不符合题意;
C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;
D.后一组数据的方差等于前一组数据的方差,此选项符合题意;
故选D.
本题考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.
3、A
【解析】
先根据勾股定理逆定理证明三角形是直角三角形,再利用面积法代入求解即可.
【详解】
∵,
∴三角形是直角三角形,
∴面积为:.
故选A.
本题考查勾股定理逆定理的应用,关键在于熟悉常用的勾股数.
4、A
【解析】
试题分析:根据全等的直角三角形的性质依次分析各小题即可判断.
用两个全等的直角三角形一定可以拼成平行四边形、矩形、等腰三角形
故选A.
考点:图形的拼接
点评:图形的拼接是初中数学平面图形中比较基础的知识,,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.
5、A
【解析】
求出∠ACB,根据线段垂直平分线的性质求出BE=CE,推出∠BCE=∠B=30°,求出∠ACE,即可求出CE的长,即可求得答案.
【详解】
∵在Rt△ABC中,∠A=90°,∠B=30°,
∴∠ACB=60°,
∵DE垂直平分斜边BC,
∴BE=CE,
∴∠BCE=∠B=30°,
∴∠ACE=60°﹣30°=30°,
在Rt△ACE中,∠A=90°,∠ACE=30°,AE=1,
∴CE=2AE=2,
∴BE=CE=2,
故选A.
本题考查了三角形内角和定理,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出CE的长.
6、C
【解析】
欲求证是否为勾股数,这里给出三边的长,只要验证即可.
【详解】
解:、,故此选项错误;
、不是整数,故此选项错误;
、,故此选项正确;
、0.3,0.4,0.5,勾股数为正整数,故此选项错误.
故选:.
本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.
7、A
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可,据此列等式,可以解答本题.
【详解】
根据题意得:,且,解得:x=1,故选A.
本题考查分式的值为零的条件,解题的关键是知道分式的值为1的条件是:(1)分子=1;(2)分母≠1.
8、D
【解析】
设CD=x,则BD=AD=10-x.在Rt△ACD中运用勾股定理列方程,就可以求出CD的长.
【详解】
解:设CD=x,则BD=AD=10-x.
∵在Rt△ACD中,(10-x)2=x2+52,
100+x2-20x=x2+25,
∴20x=75,
解得:x=3.75,
∴CD=3.75.
故选:D.
本题主要考查了折叠问题和勾股定理的综合运用.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质,用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先把(-1,0)代入y=kx+b得b=k,则k(x-3)+b<0化为k(x-3)+k<0,然后解关于x的不等式即可.
【详解】
解:把(-1,0)代入y=kx+b得-k+b=0,解b=k,
则k(x-3)+b<0化为k(x-3)+k<0,
而k<0,
所以x-3+1>0,
解得x>1.
故答案为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
10、
【解析】
利用三角形中位线求得线段FG、GH;再利用勾股定理即可求出FH的长.
【详解】
解:∵,,分别是,,中点
∴
∵∠FGH=90°
∴为直角三角形
根据勾股定理得:
故答案为:5
本题考查了三角形中位线定理以及勾股定理,熟练掌握三角形中位线定理是解答本题的关键.
11、2.1×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:小数0.00002l用科学记数法表示为2.1×10-1.
故答案为2.1×10-1.
本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
12、1
【解析】
试题分析:先由平均数计算出a=4×5-1-3-5-6=4,再计算方差(一般地设n个数据,x1,x1,…xn的平均数为,=(),则方差=[]),=[]=1.
考点:平均数,方差
13、两组对边分别相等的四边形是平行四边形.
【解析】
根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.
故答案是:两组对边分别相等的四边形是平行四边形.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
连接AC交BD与点O.由四边形AECF是平行四边形,可证OA=OC,OE=OF,又BE=DF,所以OB=OD,根据对角线互相平分的四边形是平行四边形可证结论成立.
【详解】
证明:连接AC交BD与点O.
∵四边形AECF是平行四边形,
∴OA=OC,OE=OF,
∵BE=DF,
∴OE+BE=OF+DF,
∴OB=OD,
∴四边形ABCD是平行四边形.
本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.
15、.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
,
,
,
.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
16、证明见详解.
【解析】
(1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可.
(2)连接DG,求出∠DGC=90°,求出DF=GF,根据菱形的判定推出即可.
【详解】
(1)∵AG∥DC,AD∥BC,
∴四边形AGCD是平行四边形
∴AG=DC
∵E、F分别为AG、DC的中点,
∴GE=AG,DF=DC,
即GE=DF,GE∥DF
∴四边形DEGF是平行四边形
(2)连接DG,
∵四边形AGCD是平行四边形,
∴AD=CG
∵G为BC中点,
∴BG=CG=AD
∵AD∥BG,
∴四边形ABGD是平行四边形
∴AB∥DG
∵∠B=90°,
∴∠DGC=∠B=90°
∵F为CD中点,
∴GF=DF=CF,
即GF=DF
∵四边形DEGF是平行四边形,
∴四边形DEGF是菱形.
17、(1)答案见解析;(2)5.375万元.
【解析】
(1)直接由数据求解即可求得答案;
(2)根据加权平均数的计算公式列式计算即可得.
【详解】
解:1)完成表格如下:
(2)这个公司平均每人所创年利润是=5.375(万元).
本题考查了统计表、加权平均数,熟练掌握加权平均数的计算公式是解题的关键.
18、70或80
【解析】
要求服装的单价,可设服装的单价为x元,则每件服装的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可;
【详解】
解:设单价应定为x元,根据题意得:
(x−50)[800−(x−60)÷5×100]=12000,
(x−50)[800−20x+1200]=12000,
整理得,x2−150x+5600=0,
解得=70,=80;
答:这种服装的单价应定为70元或80元.
本题主要考查了一元二次方程的应用,掌握一元二次方程的应用是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【详解】
解:∵1,1,3,x,0,3,1的众数是3,
∴x=3,
先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,
∴这组数的中位数是1.
故答案为:1;
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
20、
【解析】
根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2-1分解因式,约分即可得到化简结果.
【详解】
解:
故答案为:
此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.
21、0.4m
【解析】
先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.
【详解】
∵AB⊥BD,CD⊥BD,
∴∠ABO=∠CDO.
∵∠AOB=∠COD,
∴△OAB∽△OCD,
∴AO:CO=AB:CD,
∴4:1=1.6:CD,
∴CD=0.4.
故答案为:0.4.
本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.
22、
【解析】
在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和 AD4的值.
【详解】
解:在△AB1D2中,
∵,
∴∠B1AD2=30°,
∴B1D2=,
∴AD2==,
∵四边形AB2C2D2为菱形,
∴AB2=AD2=,
在△AB2D3中,
∵,
∴∠B2AD3=30°,
∴B2D3=,
∴AD3== ,
∵四边形AB3C3D3为菱形,
∴AB3=AD3=,
在△AB3D4中,
∵,
∴∠B3AD4=30°,
∴B3D4=,
∴AD4==,
故答案为,.
本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.
23、1
【解析】
先根据菱形的性质可得,再根据线段中点的定义可得,然后根据等边三角形的判定与性质可得,从而可得,最后根据菱形的周长公式即可得.
【详解】
四边形ABCD是菱形,
点E、F分别是AB、AD的中点
又
是等边三角形
则菱形ABCD的周长为
故答案为:1.
本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)x<3;(2)l2的表达式为y=6x-1
【解析】
(1)求不等式-2x>kx+b的解集就是求当自变量x取什么值时,y=-2x的函数值大;
(2)求△OAP的面积,只要求出OA边上的高就可以,即求两个函数的交点的纵坐标的绝对值.
【详解】
解:(1)从图象中得出当x<3时,直线l1:y=-2x在直线l2:y=kx+b的上方,
∴不等式-2x>kx+b的解集为x<3,
故答案为x<3;
(2)∵点P在l1上,
∴y=-2x=-6,
∴P(3,-6),
∵S△OAP=×6×OA=12,
∴OA=4,A(4,0),
∵点P和点A在l2上,
∴
∴
∴l2:y=6x-1.
此题考查一次函数问题,关键是根据求线段的长度的问题一般是转化为求点的坐标的问题来解决.
25、 (1)y=t(0≤t≤) (2)6小时
【解析】
(1) 将点代入函数关系式, 解得, 有
将代入, 得, 所以所求反比例函数关系式为;
再将代入, 得,所以所求正比例函数关系式为.
(2) 解不等式, 解得,
所以至少需要经过6小时后,学生才能进入教室.
26、见解析;
【解析】
试题分析:(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC;
(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长
试题解析:(1)证明:∵D、E分别为AB、AC的中点, ∴DEBC,
∵延长BC至点F,使CF=BC, ∴DEFC, 即DE=CF;
(2)解:∵DEFC, ∴四边形DEFC是平行四边形, ∴DC=EF,
∵D为AB的中点,等边△ABC的边长是2, ∴AD=BD=1,CD⊥AB,BC=2, ∴DC=EF=.
考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质
题号
一
二
三
四
五
总分
得分
批阅人
每人所创年利润/万元
10
8
5
3
人数
1
4
每人所创年利润/万元
10
8
5
3
人数
1
3
8
4
2025届河北省重点中学九上数学开学经典试题【含答案】: 这是一份2025届河北省重点中学九上数学开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年聊城市重点中学九上数学开学调研试题【含答案】: 这是一份2024年聊城市重点中学九上数学开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江西省重点中学数学九上开学综合测试模拟试题【含答案】: 这是一份2024年江西省重点中学数学九上开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。