2025届内蒙古通辽市库伦旗数学九年级第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各选项中因式分解正确的是( )
A.B.
C.D.
2、(4分)已知的周长为,,,分别为,,的中点,且,,那么的长是( )
A.B.C.D.
3、(4分)下列选项中的计算,正确的是( )
A.=±3B.2-=2C.=-5D.
4、(4分)某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是( )
A.平均数B.中位数C.众数D.方差
5、(4分)如图,等腰三角形的底边长为,面积是, 腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为( )
A.B.C.D.
6、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )
A.2B.3C.4D.5
7、(4分)在等腰三角形中,,则的周长为( )
A.B.C.或D.或
8、(4分)为了从甲、乙两名选手中选拔一名参加射击比赛,现对他们进行一次测验,两个人在相同的条件下各射靶10次,为了比较两人的成绩,制作了如下统计表:
若想选拔一位成绩稳定的选手参赛,则表中几个数据应该重点关注的是( )
A.中位数B.平均数C.方差D.命中10环的次数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.
10、(4分)要使式子有意义,则的取值范围是__________.
11、(4分)如图,已知□ABCD和正方形CEFG有一个公共的顶点C,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数是_________.
12、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.
13、(4分)直线向下平移2个单位长度得到的直线是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组,并把解集表示在下面的数轴上.
15、(8分)计算
(1)
(2)
16、(8分)如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点.
(1)求直线AB的解析式;
(2)若P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.
17、(10分)如图,在□ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AD、BC于E、F,
(1)根据题意补全图形;
(2)求证:DE=BF.
18、(10分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。
(1)小李从乙地返回甲地用了多少小时?
(2)求小李出发小时后距离甲地多远?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果一组数据3,4,,6,7的平均数为5,则这组数据的中位数和方差分别是__和__.
20、(4分)如图的直角三角形中未知边的长x=_______.
21、(4分)某种型号的空调经过两次降价,价格比原来下降了36%,则平均每次下降的百分数是_____%.
22、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是____.
23、(4分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.
25、(10分)如图,有一块边长为40米的正方形绿地ABCD,在绿地的边BC上的E处装有健身器材,BE=9米.有人为了走近路,从A处直接踏过绿地到达E处,小明想在A处树立一个标牌“少走■米,踏之何忍”.请你计算后帮小明在标牌的■处填上适当的数.
26、(12分)已知:如图,□ABCD中,延长BA至点E,使BE=AD,连结CE,求证:CE平分∠BCD.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
直接利用公式法以及提取公因式法分解因式进而判断即可.
【详解】
解:A.,故此选项错误;
B.,故此选项错误;
C.,故此选项错误;
D.,正确.
故选D.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
2、B
【解析】
根据三角形周长公式可得AB+AC+BC=60cm,然后根据三角形中位线的性质可得EF=,DF=,DE=,即可求出EF+DF+DE的值,从而求出DE.
【详解】
解:∵的周长为
∴AB+AC+BC=60cm
∵,,分别为,,的中点,
∴EF、DF、DE是△ABC的中位线
∴EF=,DF=,DE=
∴EF+DF+DE=++=(++)=30cm
∵,
∴DE=30-DF-EF=8cm
故选B.
此题考查的是三角形中位线的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解决此题的关键.
3、D
【解析】
根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减, 把同类二次根式的系数相加减, 做为结果的系数, 根号及根号内部都不变.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、,符合题意.
故答案为:D
本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.
4、B
【解析】
由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.
【详解】
解:因为3位获奖者的分数肯定是7名参赛选手中最高的,
而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,
故只要知道自己的分数和中位数就可以知道是否获奖了.
故选:.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
5、C
【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=(CM+MD)+CD
故选:C.
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
6、D
【解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
④根据三角形中位线定理可作判断;
⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
【详解】
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等边三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正确;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四边形ABCD是平行四边形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=,
∴BD=2OD=,故②正确;
③由②知:∠BAC=90°,
∴S▱ABCD=AB•AC,
故③正确;
④由②知:OE是△ABC的中位线,
又AB=BC,BC=AD,
∴OE=AB=AD,故④正确;
⑤∵四边形ABCD是平行四边形,
∴OA=OC=,
∴S△AOE=S△EOC=OE•OC=××,
∵OE∥AB,
∴,
∴,
∴S△AOP= S△AOE==,故⑤正确;
本题正确的有:①②③④⑤,5个,
故选D.
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
7、A
【解析】
等腰△ABC的两边长分别为4和2,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
【详解】
①当腰是AB,则周长为4+4+2=10;
②当腰是BC,则三边为4,2,2,此时不能构成三角形,舍去.
故选A.
此题考查等腰三角形的性质,三角形三边关系,解题关键在于分情况讨论
8、C
【解析】
方差是反映一组数据的波动大小,比较甲、乙两人的成绩的方差作出判断.
【详解】
∵,S甲=3.7<S乙=5.4,
∴应选择甲去参加比赛,
故选C.
本题考查一组数据的方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或.
【解析】
分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.
【详解】
在菱形ABCD中,∵∠A=60°,AD=,
∴AC=3,
①当CG=BC=时,AG=AC=CG=3-,
∴AP=AG=.
②当GC=GB时,易知GC=1,AG=2,
∴AP=AG=1,
故答案为1或.
本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题
10、
【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
【详解】
由题意得:
2-x≥0,
解得:x≤2,
故答案为x≤2.
11、700
【解析】
分析:由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.
详解:∵四边形CEFG是正方形,
∴∠CEF=90°,
∵∠CED=180°-∠AEF-∠CEF=180°-15°-90°=75°,
∴∠D=180°-∠CED-∠ECD=180°-75°-35°=70°,
∵四边形ABCD为平行四边形,
∴∠B=∠D=70°(平行四边形对角相等).
故答案为:70°.
点睛:本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.
12、 (-1,-1)
【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.
【详解】
菱形OABC的顶点O(0,0),B(2,2),得
D点坐标为(1,1).
每秒旋转45°,则第60秒时,得
45°×60=2700°,
2700°÷360=7.5周,
OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),
故答案为:(-1,-1).
本题考查了旋转的性质,利用旋转的性质是解题关键.
13、
【解析】
根据一次函数图象几何变换的规律得到直线y=1x向下平移1个单位得到的函数解析式为y=1x-1.
【详解】
解:直线y=1x向下平移1个单位得到的函数解析式为y=1x-1
故答案为:y=1x-1
本题考查了一次函数图象几何变换规律:一次函数y=kx(k≠0)的图象为直线,直线平移时k值不变,当直线向上平移m(m为正数)个单位,则平移后直线的解析式为y=kx+m.当直线向下平移m(m为正数)个单位,则平移后直线的解析式为y=kx-m.
三、解答题(本大题共5个小题,共48分)
14、,数轴见解析
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:解不等式x﹣2(x﹣3)≥5,得:,
解不等式+1,得:,
则不等式组的解集为,
将不等式组的解集表示在数轴上如下:
本题主要考查解不等式组,掌握解不等式组的方法及用数轴表示不等式解集的方法是解题的关键.
15、.(1) ; (2)
【解析】
(1)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可;
(2)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可.
【详解】
解:(1)原式=;
(2)原式=..
本题考查二次根式的乘除运算,解题的关键是熟练运用二次根式的性质和运算法则.
16、(1)y=﹣x+6;(2)不变化,K(0,-6)
【解析】
(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式;
(2)过点Q作QH⊥x轴于点H,易证△BOP≌△PHQ,利用全等三角形的性质可得出OB=HP,OP=HQ,两式相加得PH+PO=BO+QH,即OA+AH=BO+QH,又OA=OB,可得AH=QH,即△AHQ是等腰直角三角形,进而证得△AOK为等腰直角三角形,求出OK=OA=6,即可得出K点的坐标.
【详解】
解:(1)将A(6,0)代入y=-x-b,得:-6-b=0,
解得:b=-6,
∴直线AB的解析式为y=-x+6;
(2)不变化,K(0,-6)
过Q作QH⊥x轴于H,
∵△BPQ是等腰直角三角形,
∴∠BPQ=90°,PB=PQ,
∵∠BOA=∠QHA=90°,
∴∠BPO=∠PQH,
∴△BOP≌△HPQ,
∴PH=BO,OP=QH,
∴PH+PO=BO+QH,
即OA+AH=BO+QH,
又OA=OB,
∴AH=QH,
∴△AHQ是等腰直角三角形,
∴∠QAH=45°,
∴∠OAK=45°,
∴△AOK为等腰直角三角形,
∴OK=OA=6,
∴K(0,-6).
本题考查了待定系数法求一次函数解析式、全等三角形的判定与性质以及等腰三角形的判定,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)利用全等三角形的性质及等腰三角形的判定得出△AOK是等腰三角形.
17、(1)见解析;(2)见解析
【解析】
(1)根据题意画图即可补全图形;
(2)由平行四边形的性质可得,,再根据平行线的性质可得,进而可根据ASA证明,进一步即可根据全等三角形的性质得出结论.
【详解】
解:(1)补全图形如图所示:
(2)证明:∵四边形为平行四边形,
∴,,
∴,
又∵,
∴(ASA),
∴.
本题考查了按题意画图、平行四边形的性质和全等三角形的判定和性质等知识,属于基本题型,熟练掌握平行四边形的性质和全等三角形的判定和性质是解题的关键.
18、(1)小时;(2)小李出发小时后距离甲地千米;
【解析】
(1)根据题意可以得到小李从乙地返回甲地用了多少小时;
(2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;
【详解】
解:(1)由题意可得, (小时),
答:小李从乙地返回甲地用了小时;
(2)设小李返回时直线解析式为,
将分别代入得, ,解得,,
,当时,,
答:小李出发小时后距离甲地千米;
此题考查一次函数的应用,解题关键在于列出方程
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5; 1.
【解析】
首先根据其平均数为5求得的值,然后再根据中位数及方差的计算方法计算即可.
【详解】
解:数据3,4,,6,7的平均数是5,
解得:,
中位数为5,
方差为.
故答案为:5;1.
本题考查了平均数、中位数及方差的定义与求法,熟练掌握各自的求法是解题关键.
20、
【解析】
根据勾股定理求解即可.
【详解】
x=.
故答案为:.
本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
21、20%.
【解析】
增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题求解.设平均每次下降的百分数是x,则根据题意可列方程(1-x)2=1-36%,解方程即可求解.注意根据实际意义进行值的取舍.
【详解】
设平均每次下降的百分数是x,根据题意得(1-x)2=1-36%
解方程得x1=0.2=20%,x2=1.8(舍去)
所以平均每次下降的百分数是20%.
故答案是:20%.
考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).
22、3<x<1
【解析】
解:∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
∵AC=8,BD=14,
∴AO=4,BO=7,
∵AB=x,
∴7﹣4<x<7+4,
解得3<x<1.
故答案为:3<x<1.
23、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
二、解答题(本大题共3个小题,共30分)
24、(1)y=6x﹣100;(2)1吨
【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;
(2)把水费620元代入函数关系式解方程即可.
【详解】
(1)设y关于x的函数关系式y=kx+b,则:
解得:,所以,y关于x的函数关系式是y=6x﹣100;
(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.
答:该企业2018年10月份的用水量为1吨.
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.
25、8.
【解析】
在 Rt △ABE 中,由勾股定理得(5分)
而AB+BE=40+9=49(1分)
因为49-41=8 所以标牌上填的数是8.
26、见解析
【解析】
分析:由平行四边形的性质得出AB∥CD, AD=BC,由平行线的性质得出∠E=∠DCE,由已知条件得出BE=BC,由等腰三角形的性质得出∠E=∠BCE,得出∠DCE=∠BCE即可.
详解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC,
∴∠E=∠DCE,
∵BE=AD,
∴BE=BC,
∴∠E=∠BCE,
∴∠DCE=∠BCE,
即CE平分∠BCD.
点睛:本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证出∠E=∠BCE是解决问题的关键.
题号
一
二
三
四
五
总分
得分
平均数
中位数
方差
命中10环的次数
甲
9.5
9.5
3.7
1
乙
9.5
9.6
5.4
2
2025届内蒙古通辽市名校数学九年级第一学期开学调研试题【含答案】: 这是一份2025届内蒙古通辽市名校数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年内蒙古通辽市库伦旗数学九上开学达标检测试题【含答案】: 这是一份2024年内蒙古通辽市库伦旗数学九上开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
内蒙古通辽市库伦旗2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份内蒙古通辽市库伦旗2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,我国传统文化中的“福禄寿喜”图等内容,欢迎下载使用。