2025届辽宁省沈阳市第八十五中学九上数学开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不能判定一个四边形是平行四边形的条件是( )
A.两组对边分别平行B.一组对边平行,另一组对边相等
C.一组对边平行且相等D.两组对边分别相等
2、(4分)如图,,要根据“”证明,则还要添加一个条件是( )
A.B.C.D.
3、(4分)下面与是同类二次根式的是()
A.B.C.D.
4、(4分)一元一次不等式组的解集为x>a,则a与b的关系为( )
A.a>bB.a
6、(4分)一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是( )
A.3B.4C.6D.12
7、(4分)在平面直角坐标系中,点(a-2,a)在第三象限内,则a的取值范围是( )
A.B.C.D.
8、(4分)如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是( )
A.A B.B C.C D.D
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,AB∥CD,则∠1+∠3—∠2的度数等于 __________.
10、(4分)如图,在中,点是边上的动点,已知,,,现将沿折叠,点是点的对应点,设长为.
(1)如图1,当点恰好落在边上时,______;
(2)如图2,若点落在内(包括边界),则的取值范围是______.
11、(4分)如图,在ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________ .
12、(4分)已知关于x的方程=1的解是负值,则a的取值范围是______.
13、(4分) “I am a gd student.”这句话的所有字母中,字母“a”出现的频率是______
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
15、(8分)在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;
(1)这次调查获取的样本容量是 ;
(2)由统计图可知,这次调查获取的样本数据的众数是 ;中位数是 ;
(3)求这次调查获取的样本数据的平均数;
(4)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
16、(8分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
17、(10分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
18、(10分)我市某中学对学校倡导的“压岁钱捐款活动”进行抽样调查,得到一组学生捐款的数据,
下图是根据这组数据绘制的统计图,图中从左到右长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.
(1)他们一共调查了多少学生?
(2)写出这组数据的中位数、众数;
(3)若该校共有2000名学生,估计全校学生大约捐款多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数图像不经过第一象限,求m的取值范围是__________.
20、(4分)直角三角形的两边长为6cm,8cm,则它的第三边长是_____________。
21、(4分)如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是____,旋转角是____度.
22、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
23、(4分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为 cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知直线y=kx+3(1-k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.
实践操作
(1)当k=1时,直线l1的解析式为 ,请在图1中画出图象;当k=2时,直线l2的解析式为 ,请在图2中画出图象;
探索发现
(2)直线y=kx+3(1-k)必经过点( , );
类比迁移
(3)矩形ABCD如图2所示,若直线y=kx+k-2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.
25、(10分)如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:
(1)求出h与d之间的函数关系式;
(2)某人身高为196cm,一般情况下他的指距应是多少?
26、(12分)在平行四边形中,连接、交于点,点为的中点,连接并延长交于的延长线于点.
(1)求证:为的中点;
(2)若,,连接,试判断四边形的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四
边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边
形;⑤一组对边平行且相等的四边形是平行四边形. A、D、C均符合是平行四边形的条件,B则不能判
定是平行四边形.故选B.
2、A
【解析】
根据垂直定义求出∠CFD=∠AEB=90°,再根据得出,再根据全等三角形的判定定理推出即可.
【详解】
添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
∵,
∴,
在Rt△ABE和Rt△DCF中,
∴Rt△ABE=R△DCF(HL)
所以A选项是正确的.
本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.
3、B
【解析】
根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.
【详解】
解:A、与被开方数不同,不是同类二次根式;
B、与被开方数相同,是同类二次根式;
C、=3与被开方数不同,不是同类二次根式;
D、与被开方数不同,不是同类二次根式.
此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.
4、C
【解析】
【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.
【详解】∵一元一次不等式组的解集是x>a,
∴根据不等式解集的确定方法:大大取大,
∴a≥b,
故选C.
【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.
5、A
【解析】
首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.
【详解】
甲的作法正确;
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACB,
∵EF是AC的垂直平分线,
∴AO=CO,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴AE=CF,
又∵AE∥CF,
∴四边形AECF是平行四边形,
∵EF⊥AC,
∴四边形AECF是菱形;
乙的作法正确;
∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE
∵AF∥BE,且AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴平行四边形ABEF是菱形;
故选:A.
此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
6、C
【解析】
首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.
【详解】
310°×2÷180°+2
=720°÷180°+2
=4+2
=1
∴该正多边形的边数是1.
故选C.
此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.
7、B
【解析】
利用第三象限点的坐标特征得到,然后解不等式组即可.
【详解】
∵点P(a﹣2,a)在第三象限内,∴,∴a<1.
故选B.
本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.也考查了第三象限点的坐标特征.
8、B
【解析】
A、是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项正确;
C、不是轴对称图形,也不是中心对称图形,故本选项错误;
D、是中心对称图形,是轴对称图形,故本选项错误.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、180°
【解析】
解:∵AB∥CD
∴∠1=∠EFD
∵∠2+∠EFC=∠3
∠EFD=180°-∠EFC
∴∠1+∠3—∠2=180°
故答案为:180°
10、2;
【解析】
(1)根据折叠的性质可得,由此即可解决问题;
(2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明,求出EB′即可解决问题;
【详解】
解:(1)∵折叠,
∴.
∵,
∴,
∴,
∴,
∴.
(2)当落在上时,过点作于点.
∵,,
∴,
∴.
在中,,
∴.
∵,
∴,
∴.
∴,
∴,
∴.
本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
11、
【解析】
先由平行四边形对边相等得AD=BC, 作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.
【详解】
如图,过D作DE⊥AB交AB于E,
∵四边形ABCD为平行四边形,∴AD=BC=2,
△ADE为等腰直角三角形,
,
根据勾股定理得 ,
,
,
,
即AB和CD之间的距离为,
故答案为:
本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.
12、a<-2且a≠-4
【解析】
表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.
【详解】
解:方程=1,
去分母得:2x-a=x+2,
解得:x=a+2,
由分式方程的解为负值,得到a+2<0,且a+2≠-2,
解得:a<-2且a≠-4,
故答案为:a<-2且a≠-4
此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.
13、
【解析】
根据题意可知15个字母里a出现了2次,所以字母“a”出现的频率是.故答案为.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
解:结论:四边形ABCD是平行四边形
证明:∵DF∥BE
∴∠AFD=∠CEB
又∵AF=CE DF=BE,
∴△AFD≌△CEB(SAS)
∴AD=CB ∠DAF=∠BCE
∴AD∥CB
∴四边形ABCD是平行四边形
15、(1)1(2)30,2(3)平均数是2.5元(4)该校本学期计划购买课外书的总花费为220元
【解析】
(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;
(2)根据条形统计图中的数据以及众数和中位数的定义即可得到答案;
(3) 根据平均数的算法进行计算即可得到答案;
(4)计算总学生人数乘以平均花费即可得到答案.
【详解】
(1)6+12+10+8+4=1,
故答案为:1.
(2)众数是30元,中位数是2元,
故答案为:30,2.
(3)==2.5元,
答:平均数是2.5元.
(4)1000×2.5=220元,
答:该校本学期计划购买课外书的总花费为220元.
本题考查条形统计图、众数、中位数和平均数,解题的关键是掌握条形统计图、众数、中位数和平均数.
16、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为或2或﹣.
【解析】
【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;
(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;
(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.
【详解】(1)把C(m,4)代入一次函数y=﹣x+5,可得
4=﹣m+5,
解得m=2,
∴C(2,4),
设l2的解析式为y=ax,则4=2a,
解得a=2,
∴l2的解析式为y=2x;
(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,
y=﹣x+5,令x=0,则y=5;令y=0,则x=10,
∴A(10,0),B(0,5),
∴AO=10,BO=5,
∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,
∴当l3经过点C(2,4)时,k=;
当l2,l3平行时,k=2;
当11,l3平行时,k=﹣;
故k的值为或2或﹣.
【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
17、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
18、(1)50人(2)20,20(3)34800
【解析】
【分析】(1)根据捐款20元和25与的学生一共是28人及这两组所占的总人数比例可求出总人数;
(2)众数即人数最多的捐款数,中位数要找到从小到大排列位于中间的数据;
(3)首先计算平均捐款数,再进一步估计总体平均捐款数,从而计算全校捐款数.
【详解】(1)(1)28÷=50(名),
所以一共调查了50名学生;
(2)设捐款20元和25元的学生分别有8x人和6x人.
则有:8x+6x=28,
∴x=2
5个组的人数分别为4,8,10,16,12,
∴这组数据的中位数是20元,众数是20元;
(3)平均每个学生捐款的数量是:
(5×4+10×8+15×10+20×16+25×12)=17.4(元),
17.4×2000=34800(元),
所以全校学生大约捐款34800元.
【点睛】本题考查了统计图、用样本估计总体、中位数、众数等,考查了利用频数分布直方图以及利用频数分布直方图获取信息的能力,解答本题的关键是理解众数、中位数的概念,能够根据部分所占的百分比计算总体,能够用样本平均数估计总体平均数.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【分析】一次函数图像不经过第一象限,则一次函数与y轴的交点在y轴的负半轴或原点.
【详解】
∵图象不经过第一象限,即:一次函数与y轴的交点在y轴的负半轴或原点,
∴1-m<0,m-2≤0
∴m的取值范围为:1
20、10cm或cm.
【解析】
分8cm的边为直角边与斜边两种情况,利用勾股定理进行求解即可.
【详解】
解:当8cm的边为直角边时,
第三边长为=10cm;
当8cm的边为斜边时,
第三边长为cm.
故答案为:10cm或cm.
本题主要考查勾股定理,解此题的关键在于分情况讨论.
21、 1
【解析】
先根据平面直角坐标系得出点的坐标,从而可得的垂直平分线,再利用待定系数法分别求出直线的解析式,从而可得其垂直平分线的解析式,联立两条垂直平分线即可求出旋转中心的坐标,然后根据旋转中心可得出旋转角为,最后利用勾股定理的逆定理即可得求出旋转角的度数.
【详解】
由图可知,点的坐标为,点的坐标为
点关于y轴对称
y轴垂直平分,即线段的垂直平分线所在直线的解析式为
设直线的解析式为
将点代入得:,解得
则直线的解析式为
设垂直平分线所在直线的解析式为
的中点坐标为,即
将点代入得:,解得
则垂直平分线所在直线的解析式为
联立,解得
则旋转中心的坐标是
由此可知,旋转角为
是等腰直角三角形,且
故答案为:,1.
本题考查了利用待定系数法求一次函数的解析式、旋转的定义、勾股定理的逆定理等知识点,掌握确定旋转中心的方法是解题关键.
22、0,2
【解析】
求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
【详解】
解:移项得,﹣2x﹣3x>﹣6﹣4,
合并同类项得,﹣5x>﹣20,
系数化为2得,x<2.
故其非负整数解为:0,2.
本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
23、4.
【解析】
试题解析:∵四边形ABCD是矩形,
∴OA=AC,OB=BD,BD=AC=8cm,
∴OA=OB=4cm,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=4cm.
考点:矩形的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x,见解析;y=2x-3,见解析;(2)(3,3);(3)见解析.
【解析】
(1)把当k=1,k=2时,分别代入求一次函数的解析式即可,
(2)利用k(x-3)=y-3,可得无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)先求出直线y=kx+k-2(k≠0)无论k取何值,总过点(-1,-2),再确定矩形对角线的交点即可画出直线.
【详解】
(1)当k=1时,直线l1的解析式为:y=x,
当k=2时,直线l2的解析式为y=2x-3,
如图1,
(2)∵y=kx+3(1-k),
∴k(x-3)=y-3,
∴无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)如图2,
∵直线y=kx+k-2(k≠0)
∴k(x+1)=y+2,
∴(k≠0)无论k取何值,总过点(-1,-2),
找出对角线的交点(1,1),通过两点的直线平分矩形ABCD的面积.
本题主要考查了一次函数综合题,涉及一次函数解析式及求点的坐标,矩形的性质,解题的关键是确定k(x+1)=y+2,无论k取何值(k≠0),总过点(-1,-2).
25、 (1) h=9d−20;(2) 24cm.
【解析】
(1)根据题意设h与d之间的函数关系式为:h=kd+b,利用待定系数法从表格中取两组数据,利用待定系数法,求得函数关系式;
(2)把h=196代入函数解析式即可求得.
【详解】
(1)设h与d之间的函数关系式为:h=kd+b.
把d=20,h=160;d=21,h=169,
分别代入得,.
解得k=9,b=−20,
即h=9d−20;
(2)当h=196时,196=9d−20,
解得d=24cm.
本题考查了一次函数的应用,根据题意找到对应数据是解题的关键.
26、证明步骤见解析
【解析】
(1)根据平行四边形的性质再结合已知得到△AEF≌△DEC,即可解题,
(2)先证明四边形ACDF是平行四边形,再证明△BCF是等边三角形,即可解题.
【详解】
解(1)在平行四边形中,AB∥CD,
∴∠FAD=∠CDA,AB=CD
∵点为的中点
∴AE=DE,∠AEF=∠DEC,
∴△AEF≌△DEC
∴AF=CD,
∴AB=AF,即为的中点
(2)由(1)知AF=2AB,AF平行且等于CD
∴四边形是平行四边形,
又∵,
∴AF=AD,
∴△BCF是等边三角形,
∴FC=AD,
∴平行四边形是矩形
本题考查了平行四边形的性质,矩形的判定,等边三角形的判定,属于简单题,熟悉各种图形的判定定理是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】: 这是一份2025届辽宁省沈阳市和平区九上数学开学调研模拟试题【含答案】,共29页。试卷主要包含了选择题,一象限B.第二,填空题等内容,欢迎下载使用。
2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】: 这是一份2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】: 这是一份2025届辽宁省沈阳市第八十二中学九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。