2025届江苏省扬州市仪征市第三中学数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为( )
A.B.C.D.
2、(4分)小明研究二次函数(为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当时,y随x的增大而增大,则m的取值范围为;④点与点在函数图象上,若,,则.其中正确结论的个数为( )
A.1B.2C.3D.4
3、(4分)已知n是正整数,是整数,则n的最小值是( )
A.1B.2C.3D.4
4、(4分)如果把分式中的x和y都扩大2倍,那么分式的值( )
A.扩大为原来的4倍B.扩大为原来的2倍
C.不变D.缩小为原来的倍
5、(4分)在函数y=中,自变量x的取值范围是( )
A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3
6、(4分)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为1﹣6;④当OD⊥AD时,BP=1.其中结论正确的有( )
A.1个B.1个C.3个D.4个
7、(4分)下列关于一次函数的说法中,错误的是( )
A.函数图象与轴的交点是
B.函数图象自左至右呈下降趋势,随的增大而减小
C.当时,
D.图象经过第一、二、三象限
8、(4分)课堂上老师在黑板上布置了右框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?( )
用平方差公式分解下列各式:
(1)
(2)
(3)
(4)
A.第1道题B.第2道题C.第3道题D.第4道题
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,AB=BC=CD=DE=EF=FG,∠1=125°,则∠A=_____度.
10、(4分)若二次根式有意义,则x的取值范围是___.
11、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
12、(4分)若点P(3,2)在函数y=3x-b的图像上,则b=_________.
13、(4分)对于实数,,,表示,两数中较小的数,如,.若关于的函数,的图象关于直线对称,则的取值范围是__,对应的值是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
15、(8分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
16、(8分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.
(1)求证:四边形ABCD是菱形;
(2)若求EF的长.
17、(10分)如图,是等边三角形,是中线,延长至,.
(1)求证:;
(2)请在图中过点作交于,若,求的周长.
18、(10分)如图,正方形ABCD中,点E在BC边上,AF平分∠DAE,DF//AE,AF与CD相交于点G.
(1)如图1,当∠AEC = ,AE=4时,求FG的长;
(2)如图2,在AB边上截取点H,使得DH=AE,DH与AF、AE分别交于点M、N,求证:AE=AH+DG
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE=5,折痕为 PQ,则 PQ 的长为_________cm.
20、(4分)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=__.
21、(4分)若,则m-n的值为_____.
22、(4分)某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.
23、(4分)如图如果以正方形的对角线为边作第二个正方形,再以对角线为边作第三个正方形,如此下去,…,已知正方形的面积为1,按上述方法所作的正方形的面积依次为,…(为正整数),那么第8个正方形的面积__.
二、解答题(本大题共3个小题,共30分)
24、(8分)在下列网格图中,每个小正方形的边长均为个单位长度.已知在网格图中的位置如图所示.
(1)请在网格图中画出向右平移单位后的图形,并直接写出平移过程中线段扫过的面积;
(2)请在网格图中画出以为对称中心的图形.(保留作图痕迹)
25、(10分)记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).
(1)写出y关于x的函数表达式及自变量x的取值范围;
(2)在如图直角坐标系中,用描点法画出所求函数图象;
(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.
26、(12分)如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为.小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.
【详解】
∵A(5,0)和B(0,4),
∴OA=5,OB=4,
∴AB=,即这两点之间的距离是.
故选A.
本题考查了勾股定理的应用,根据坐标得出OA及OB的长是解题关键.
2、D
【解析】
根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.
【详解】
解: 二次函数=-(x-m)1+1(m为常数)
①∵顶点坐标为(m,1)且当x=m时,y=1
∴这个函数图象的顶点始终在直线y=1上
故结论①正确;
②令y=0,得-(x-m)1+1=0
解得:x=m-1,x=m+1
∴抛物线与x轴的两个交点坐标为A(m-1,0),B(m+1,0)
则AB=1
∵顶点P坐标为(m,1)
∴PA=PB=,
∴
∴是等腰直角三角形
∴函数图象的顶点与x轴的两个交点构成等腰直角三角形
故结论②正确;
③当-1<x<1时,y随x的增大而增大,且-1<0
∴m的取值范围为m≥1.
故结论③正确;
④∵x1+x1>1m
∴>m
∵二次函数y=-(x-m)1+1(m为常数)的对称轴为直线x=m
∴点A离对称轴的距离小于点B离对称轴的距离
∵x1<x1,且-1<0
∴y1>y1
故结论④正确.
故选:D.
本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.
3、C
【解析】
先分解质因式,再根据二次根式的性质判断即可.
【详解】
解:∵48=42×3,
又∵n是正整数,是整数,
∴符合n的最小值是3,
故选:C.
本题考查了二次根式的性质和定义,能熟记二次根式的性质是解此题的关键.
4、B
【解析】
依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可;
【详解】
解:分别用2x和2y去代换原分式中的x和y得,
,
可见新分式扩大为原来的2倍,
故选B.
本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.
5、B
【解析】
根据二次根式有意义的条件列出不等式即可.
【详解】
解:根据题意得:x+3≥0
解得:x≥-3
所以B选项是正确的.
本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
6、D
【解析】
①由矩形的性质得到,根据折叠的性质得到,,,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故①正确;
②过作于,得到,,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故②正确;
③连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故③正确;
④根据已知条件推出,,三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故④正确.
【详解】
解:①四边形是矩形,
,
将沿折叠得到,
,,,
,
,
,
,
四边形是矩形,
,
四边形为正方形;故①正确;
②过作于,
点,点,
,,
,,
,
,
的面积为,故②正确;
③连接,
则,
即当时,取最小值,
,,
,
,
即的最小值为;故③正确;
④,
,
,
,
,,三点共线,
,
,
,
,
,
,
,
,故④正确;
故选:.
本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.
7、D
【解析】
根据一次函数的图像与性质即可求解.
【详解】
A. 函数图象与轴的交点是,正确;
B. 函数图象自左至右呈下降趋势,随的增大而减小,正确
C. 当时,解得,正确
D. 图象经过第一、二、四象限,故错误.
故选D.
此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质.
8、C
【解析】
根据平方差公式的特点“符号相同数的平方减符号相反数的平方等于两数之和与两数之差的乘积”即可求解.
【详解】
解:由题意可知:,
,
无法用平方差公式因式分解,
,
故第3道题错误.
故选:C.
本题考查了用公式法进行因式分解,熟练掌握平方差公式及完全平方式是解决此类题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
设∠A=x.根据等腰三角形的性质和三角形的外角的性质,得∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FCE=∠FEC=5x,则180°﹣5x=130°,即可求解.
【详解】
设∠A=x,
∵AB=BC=CD=DE=EF=FG,
∴根据等腰三角形的性质和三角形的外角的性质,得
∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FGE=∠FEG=5x,
则180°﹣5x=125°,
解,得x=1°,
故答案为1.
本题考查了等腰三角形的性质和三角形的外角的性质的运用;发现并利用∠CBD是△ABC的外角是正确解答本题的关键.
10、
【解析】
试题分析:根据题意,使二次根式有意义,即x﹣1≥0,解得x≥1.
故答案是x≥1.
考点:二次根式有意义的条件.
11、1.1
【解析】
连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF =∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.
【详解】
连接DF,如图所示:
在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,
∵AD=AC=3,AF⊥CD,
∴∠CAF =∠DAF,BD=AB-AD=2,
在△ADF和△ACF中,
∴△ADF≌△ACF(SAS),
∴∠ADF=∠ACF=90°,CF=DF,
∴∠BDF=90°,
设CF=DF=x,则BF=4-x,
在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,
即x2+22=(4-x)2,
解得:x=1.1;
∴CF=1.1;
故答案为1.1.
本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.
12、1
【解析】
∵点P(3,2)在函数y=3x-b的图象上,
∴2=3×3-b,
解得:b=1.
故答案是:1.
13、或, 6或3.
【解析】
先根据函数可知此函数的对称轴为y轴,由于函数关于直线x=3对称,所以数,的图象即为的图象,据此解答即可
【详解】
设,
①当与关于对称时,可得,
②在,中,与没重合部分,即无论为何值,
即恒小于等于,那么由于对对称,也即对于对称,得,.
综上所述,或,对应的值为6或3
故答案为或,6或3
此题考查函数的最值及其几何意义,解题关键在于分情况讨论
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
15、详见解析
【解析】
由AC=CD,∠ACB=∠DCE=90°,根据HL证出Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
【详解】
∵点C为AD的中点,
∴AC=CD,
∵BE⊥AD,
∴∠ACB=∠DCE=90°,
在Rt△ACB和Rt△DCE中,,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥ED.
考点:全等三角形的判定与性质
16、 (1)见解析;(2)
【解析】
(1)证明,得出,即可得出结论;
(2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
,
∵BD平分,
,
,
,
是菱形;
(2)解:∵四边形ABCD是菱形,
,
,
∴四边形ABDE是平行四边形,,
,
,
,
是等腰直角三角形,
.
本题考查了平行四边形的性质与判定、菱形的判定与性质、等腰三角形的判定以及等腰直角三角形的判定与性质;熟练掌握菱形判定与性质是解决问题的关键.
17、(1)详见解析;(2)48.
【解析】
根据等边三角形的性质得到,再根据外角定理与等腰三角形的性质得到,故,即可证明;
(2)根据含30°的直角三角形得到C的长即可求解.
【详解】
(1)证明:是等边三角形,是中线,
,
又,.
又,
.
,(等角对等边);
(2)于,,是直角三角形
,,
,,
是等边三角形,是中线
,,
是等边三角形
的周长.
此题主要考查等边三角形的性质,解题的关键是熟知等腰三角形的判定与性质及含30°的直角三角形的性质.
18、(1)FG=2;(2)见解析.
【解析】
(1)根据正方形的性质,平行线的性质,角平分线的性质可得出∠DAF=∠F=30°,进一步可求得∠GDF=∠F=30°,从而得出FG=DG,利用勾股定理可求出DG=2,故FG=2.
(2)根据已知条件可证得AE=DH且AE⊥DH,从而证得∠MAH=∠AMH,∠DMG=∠DGM,从而证得AH=MH,DM=DG,而AE=DH=DM+MH即AE=AH+DG.
【详解】
(1)当∠AEC=120°,即∠DAE=60°,
即∠BAE=∠EAG=∠DAG=30°,
在三角形ABE中,
AE=4,
所以,BE=2,AB=2,
所以,AD=AB=2,
又DF∥AE,所以,∠F=∠EAG=30°,
所以,∠F=∠DAG=30°,
又所以,∠AGD=60°,所以,∠CDG=30°,
所以 FG=DG
在△ADG中,AD=2,所以,DG=2,FG=2
(2)证明:∵四边形ABCD为正方形,
∴∠DAH=∠ABE=90°,AD=AB,
在Rt△ADH和Rt△BAE中
∴Rt△ADH≌Rt△BAE,
∴∠ADH=∠BAE,
∵∠BAE+∠DAE=90°,
∴∠ADH+∠DAE=90°,
∴∠AND=90°.
∵AF平分∠DAE,
∴∠DAG=∠EAG,
∵∠ADH=∠BAE,
∴∠DAG+∠ADH=∠EAG+∠BAE.
即∠MAH=∠AMH.
∴AH=MH.
∵AE∥DF,
∴∠MDF=∠AND=90°,∠DAF=∠F
∴∠GDF=∠ADM,
∴∠ADM+∠DAF=∠GDF+∠F,
即∠DMG=∠DGM.
∴DM=DG.
∵DH=DM+HM,
∴AE=AH+DG.
本题考查正方形的性质、全等三角形的判定和性质、角平分线的性质、平行线的性质、三角形的外角的性质等腰三角形的判定,线段的各差关系。正确理解和运用相关知识是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、13
【解析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=
故答案是:13.
本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.
20、4
【解析】
根据题意,可以证明S与S1两个平行四边形的高相等,长是S1的2倍,S3与S的长相等,高是S的一半,这样就可以把S1和S3用S来表示,从而计算出S的
【详解】
解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,
∴AB∥HF//DC//GN,
设AC与FH交于P,CD与HG交于Q,
∴△PFC、△QCG和△NGE是正三角形,
∵F、G分别是BC、CE的中点,
故答案为:4.
本题主要考查了等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=ah.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
21、4
【解析】
根据二次根式与平方的非负性即可求解.
【详解】
依题意得m-3=0,n+1=0,解得m=3,n=-1,
∴m-n=4
此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.
22、23
【解析】当数据个数是奇数个时,中位数是最中间的数;当数据个数是偶数个时,中位数是最中间的两个数的平均数,由折线图可知,20本的有4人;21本的有8人;23本的有20人,24本的有8人,所以中位数是23。
故答案是:23
23、128
【解析】
由题意可以知道第一个正方形的边长为1,第二个正方形的边长为 ,第三个正方形的边长为2,就有第n个正方形的边长为(n-1),再根据正方形的面积公式就可以求出结论.
【详解】
第一个正方形的面积为1,故其边长为1=2;
第二个正方形的边长为,其面积为2=2;
第三个正方形的边长为2,其面积为4=2;
第四个正方形的边长为2,其面积为8=2;
…
第n个正方形的边长为(),其面积为2.
当n=8时,
S=2,
=2=128.
故答案为:128.
此题考查正方形的性质,解题关键在于找到规律.
二、解答题(本大题共3个小题,共30分)
24、(1)18;(1)图形见详解.
【解析】
(1)利用网格特点和平移的性质画出点A、B、C的对应点A1、B1、C1即可;线段BC扫过的图形为平行四边形,从而利用平行四边形的面积公式计算即可;
(1)延长AP到A1使A1P=AP,延长BP到B1使B1P=BP,延长CP到C1使C1P=CP,从而得到△A1B1C1.
【详解】
解:(1)如图,△A1B1C1为所作,线段BC扫过的面积=7×4=18;
(1)如图,△A1B1C1为所作.
本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
25、(1)y(x>0);(2)答案见解析;(3)8.
【解析】
(1)根据平行四边形的面积公式,列出函数关系式即可;
(2)利用描点法画出函数图象即可;
(3)如图作DE⊥BC交BC的延长线于E.解直角三角形求出CD即可.
【详解】
(1)由题意,xy=18,
所以y(x>0);
(2)列表如下:
函数图象如图所示:
(3)如图作DE⊥BC交BC的延长线于E,
∵BC=4,∴DE,
∵BD,∴BE6,
∴EC=2,∴CD,
∴此平行四边形的周长=8.
本题考查了反比例函数的性质、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题
26、游戏公平
【解析】
直接利用概率公式求得指针指向蓝色区域和红色区域的概率,进而比较得出答案.
【详解】
解:∵红色区域扇形的圆心角为,
∴蓝色区域扇形的圆心角为60°+60°,
,
,
∴,
所以游戏公平.
故答案为:游戏公平.
本题考查游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
题号
一
二
三
四
五
总分
得分
批阅人
2025届江苏扬州市仪征市九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届江苏扬州市仪征市九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省扬州市江都区郭村中学数学九上开学监测试题【含答案】: 这是一份2025届江苏省扬州市江都区郭村中学数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省仪征市古井中学数学九上开学达标测试试题【含答案】: 这是一份2024年江苏省仪征市古井中学数学九上开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。