2025届江苏省南京市部分学校九上数学开学教学质量检测试题【含答案】
展开
这是一份2025届江苏省南京市部分学校九上数学开学教学质量检测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( )
A.1~3月份利润的平均数是120万元
B.1~5月份利润的众数是130万元
C.1~5月份利润的中位数为120万元
D.1~2月份利润的增长快于2~3月份利润的增长
2、(4分)已知直线l:y=-x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为( )
A.y=x-1B.y=2x-1C.y=x-4D.y=2x-4
3、(4分)化简的结果是( )
A.B.C.D.
4、(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是( )
A.36°B.45°C.54°D.72°
5、(4分)已知,则有( )
A.B.C.D.
6、(4分)下列二次根式中属于最简二次根式的是( )
A.B.C.D.
7、(4分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC
8、(4分)解分式方程﹣3=时,去分母可得( )
A.1﹣3(x﹣2)=4B.1﹣3(x﹣2)=﹣4
C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.
10、(4分)如果代数式有意义,那么字母x的取值范围是_____.
11、(4分)如图,在菱形中,,点是边的中点,是对角线上的一个动点,若,则的最小值是_____.
12、(4分)某班的中考英语口语考试成绩如表:
则该班中考英语口语考试成绩的众数比中位数多_____分.
13、(4分)如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比,若AB=1.5,则DE=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.
(1)求2015年至2017年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的情况,该地区到2019年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.
15、(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、象限内的,两点,与轴交于点.
(1)求该反比例函数和一次函数的解析式;
(2)直接写出当时,的取值范围;
(3)长为2的线段在射线上左右移动,若射线上存在三个点使得为等腰三角形,求的值.
16、(8分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?
(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.
方法2:如图②,取四边形四边的中点,,,,连接,,,,
(2)求证:四边形是平行四边形;
(3)请直接写出S四边形ABCD与之间的关系:_____________.
方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;
(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.
(5)求证:四边形是平行四边形.
(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)
(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD= .
(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________
17、(10分)解决问题.
学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.
(1)求A,B两种型号足球的销售价格各是多少元/个?
(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?
18、(10分)如图所示,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上,判断△ABC和△DEF是否相似,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为 cm.
20、(4分)你喜欢足球吗?下面是对耒阳市某校八年级学生的调查结果:
则男同学中喜欢足球的人数占全体同学的百分比是________.
21、(4分)如图,E是正方形ABCD的对角线BD上任意一点,四边形EGCG是矩形,若正方形ABCD的周长为a,则矩形EFCG的周长为_______________.
22、(4分)已知数据,-7,, ,-2017,其中出现无理数的频率是________________.
23、(4分)如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,等腰△ABC中,已知AC=BC=2, AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.
(1)求证:四边形BCFE是平行四边形;
(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;
(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.
25、(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).
(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)直接写出以C1、B1、B2为顶点的三角形的形状是 .
26、(12分)如图,▱ABCD中,,,垂足分别是E,求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.
【详解】
A. 1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=,排除
B. 1~5月份的利润分别是100,110,130,115,130,众数为130,符合.
C. 1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.
D. 1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.
故答案为B
本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.
平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.
众数:出现次数最多的数据为众数.
2、D
【解析】
首先根据题意求出点P的坐标,然后根据垂直的两条直线的k互为负倒数设出函数解析式,然后将点P的坐标代入得出答案.
【详解】
根据题意可得:点P的坐标为(2,0), 折直线l′的解析式为:y=2x+b,
将(2,0)代入可得:4+b=0,解得:b=-4, ∴直线的解析式为y=2x-4,故选D.
本题主要考查的是一次函数解析式的求法,属于中等难度的题型.明确垂直的两条直线的比例系数互为负倒数是解题的关键.
3、C
【解析】
根据二次根式的性质进行化简即可.
【详解】
∵a≥1,
∴原式=.
故选C.
本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.
4、A
【解析】
由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.
【详解】
解:设∠A=x°,
∵BD=AD,
∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,
∵BD=BC,
∴∠BDC=∠BCD=2x°,
∵AB=AC,
∴∠ABC=∠BCD=2x°,
在△ABC中x+2x+2x=180,
解得:x=36,
∴∠C=∠BDC=72°,
∴∠DBC=36°,
故选:A.
此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.
5、A
【解析】
求出m的值,求出2)的范围5<m<6,即可得出选项.
【详解】
m=(-)×(-2),
=,
=×3=2
=,
∵,
∴5<<6,
即5<m<6,
故选A.
本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<
<6,题目比较好,难度不大.
6、A
【解析】
根据最简二次根式的定义和化简方法将二次根式化简成最简二次根式即可.
【详解】
如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.那么,这个根式叫做最简二次根式.只有A符合定义.
故答案选A
本题主要考查二次根式的化简和计算,解决本题的关键是熟练掌握二次根式的化简方法.
7、B
【解析】
A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;
B.菱形的对角线不一定相等;
C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;
D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.
8、B
【解析】
方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
【详解】
方程两边同时乘以(x-2),得
1﹣3(x﹣2)=﹣4,
故选B.
本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:根据勾股定理,AB=,
BC=,
AC=,
∵AC2+BC2=AB2=26,
∴△ABC是直角三角形,
∵点D为AB的中点,
∴CD=AB=×=.
故答案为.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
10、x⩾−2且x≠1
【解析】
先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.
【详解】
∵代数式有意义,
∴,
解得x⩾−2且x≠1.
故答案为:x⩾−2且x≠1.
本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.
11、
【解析】
找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.
【详解】
连接DE交AC于P,连接DB,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值,
∵∠ABC=120°,
∴∠BAD=60°,
∵AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质).
在Rt△ADE中,DE==.
∴PB+PE的最小值为.
故答案为.
本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.
12、3
【解析】
这组数出现次数最多的是3;∴这组数的众数是3.
∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,
∴这组数的中位数是2.
∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,
故答案为3.
【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
13、4.1
【解析】
根据位似图形的性质得出AO,DO的长,进而得出, ,求出DE的长即可
【详解】
∵△ABC与△DEF位似,原点O是位似中心,
∴,
∵,
∴,
∴,
∴DE=3×1.1=4.1.
故答案为4.1.
此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO的长
三、解答题(本大题共5个小题,共48分)
14、 (1)10%(2)不能.
【解析】
(1)增长前量(1+增长率)=增长后量,2015年2900万元为增长前量,2017年3509万元为增长后量,即可列出方程求解;
(2)根据(1)中求得的增长率求出2019年该地区投入的教育经费.
【详解】
(1)设增长率为x,由题意得
,
解得(不合题意,舍去)
答:2015年至2017年该地区投入教育经费的年平均增长率为10%.
(2)2019年该地区投入的教育经费是(万元),
4245.89
答:按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费不能达到4250万元.
此题考查一元二次方程的实际应用,此类是增长率问题的一元二次方程,可以根据“增长前量(1+增长率)=增长后量”列得方程.
15、(1),;(2)或;(3)-1
【解析】
(1)利用待定系数法即可解决问题.
(2)利用图象法,写出y1D的图象在y2的图象上方的对应的自变量的取值即可.
(3)如图2中,分别以E,F为圆心EF为半径画圆,两圆在EF的上方交于点N,当点N在射线CA上时,射线CA上存在三个点P使得△PEF为等腰三角形.解直角三角形求出CH,EH即可.
【详解】
解:(1)∵A(3,5),B(a,-3)在的图象上,
∴m=15,a=-5,
∴A(3,5),B(-5,-3),
把A,B的坐标代入y1=kx+b中,
得,解得:
(2)观察图1可知:当y1>y2时,x的取值范围为:x>3或-5<x<1.
(3)如图2中,分别以E,F为圆心EF为半径画圆,两圆在EF的上方交于点N,当点N在射线CA上时,射线CA上存在三个点P使得△PEF为等腰三角形.
作NH⊥EF于H.
∵NE=EF=NF,NH⊥EF,
∴EH=HF=1,NH=,
∵直线AC的解析式为y=x+2,
∴∠ACF=45°,
∴CH=NH=,
∴EC=CH-EH=-1
本题属于反比例函数综合题,考查了一次函数的应用,反比例函数的应用,等边三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.
16、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD ;(4)AEO,OEB;(5)见详解;(6);(7)
【解析】
(1)先证四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
即可得出结论;
(2)证明,和,,即可得出结论;
(1)由,可得S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,即可得出结论;
(4)有旋转的定义即可得出结论;
(5)先证,得到,再证,即可得出结论;
(6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;
(7)应用方法1,过点O作OM⊥IK与点M, 再计算即可得出答案.
【详解】
解:方法一:如图,
∵EF∥AC∥HD,EH∥DB∥FG,
∴四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,
∴S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
∴.
故答案为.
方法二:如图,连接.
(1),分别为,中点
..
,分别为,中点
.
,
四边形为平行四边形
(2),分别为,中点
..
∴S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,
∴
故答案为.
方法1.(1)有旋转可知;.
故答案为∠AEO;∠OEB.
(2)证明:有旋转知.
.
旋转.
四边形为平行四边形
应用1:如图,应用方法1,过点H作HM⊥EF与点M,
∵,
∴∠AEM=60°, ∠EHM=10°,
∵,,
∴EM=1,EH=6,EF=8,
∴HM==,
∴=EF·HM=24
∴=,
故答案为.
应用2:如图,应用方法1,过点O作OM⊥IK与点M,
,
∵,
∴∠MIO=60°, ∠IOM=10°,
∵,,
∴IM=1,OI=6,IK=8,
∴OM==,
∴=KI·OM=24
∴S四边形ABCD=,
故答案为.
此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.
17、(1)A,B两种型号足球的销售价格各是50元/个,90元/个.(2)见解析
【解析】
试题分析:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;
(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.
解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得
解得
答:A,B两种型号足球的销售价格各是50元/个,90元/个.
(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得
,
解得7.5≤x≤12.5
∵x是整数,
∴x=8、9、10、11、12,
有5种购球方案:
购买A型号足球8个,B型号足球12个;
购买A型号足球9个,B型号足球11个;
购买A型号足球10个,B型号足球10个;
购买A型号足球11个,B型号足球9个;
购买A型号足球12个,B型号足球8个.
18、△ABC和△DEF相似,理由详见解析
【解析】
首先根据小正方形的边长,求出△ABC和△DEF的三边长,然后判断它们是否对应成比例即可.
【详解】
△ABC和△DEF相似,理由如下:
由勾股定理,得:AC=,AB=2,BC=5,
DF=2,DE=4, EF=2,
,
所以,△ABC∽△DEF.
本题考查相似三角形的判定,找准对应边成比例即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
试题分析:首先根据菱形的对角线互相垂直平分,再利用勾股定理,求出BC的长是多少;然后再结合△ABC的面积的求法,求出菱形ABCD的高AE是多少即可.
解:∵四边形ABCD是菱形,
∴AC、BD互相垂直平分,
∴BO=BD=×8=4(cm),CO=AC=×6=3(cm),
在△BCO中,由勾股定理,可得
BC===5(cm)
∵AE⊥BC,
∴AE•BC=AC•BO,
∴AE===(cm),
即菱形ABCD的高AE为cm.
故答案为.
20、50
【解析】
先计算调查的男同学喜欢与不喜欢的全体人数,再用男同学中喜欢的人数比上全体人数乘以100%即可得出答案.
【详解】
调查的全体人数为75+15+36+24=150人,
所以男同学中喜欢足球的人数占全体同学的百分比=
故答案为50.
本题考查的是简单的统计,能够计算出调查的全体人数是解题的关键.
21、
【解析】
由矩形EFCG,易得△BEF与△DEG是等腰直角三角形,只要证明矩形EFCG的周长=BC+CD即可.
【详解】
∵四边形ABCD是正方形,
∴∠DBC=∠BDC=45°,
∵正方形ABCD的周长为a,
∴BC+CD=,
∵四边形EFCG是矩形,
∴∠EFB=∠EGD=90°,
∴△BEF与△DEG是等腰直角三角形,
∴BF=EF,EG=DG,
∴矩形EFCG的周长是:EF+FC+CG+EG=BF+FC+CG+DG=BC+CD=.
故答案为:.
本题考查的是正方形的性质,熟知正方形的四条边相等,四个角都是直角是解答此题的关键.
22、0.6
【解析】
用无理数的个数除以总个数即可.
【详解】
∵数据,-7,, ,-2017中无理数有, ,共3个,
∴出现无理数的频率是3÷5=0.6.
故答案为:0.6.
本题考查了无理数的定义,以及频率的计算,熟练运用频率公式计算是解题的关键.频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷总数
23、3或1
【解析】
分两种情况讨论:①当∠AFE=90°时,易知点F在对角线AC上,设DE=x,则AE、EF均可用x表示,在Rt△AEF中利用勾股定理构造关于x的方程即可;②当∠AEF=90°时,易知F点在BC上,且四边形EFCD是正方形,从而可得DE=CD.
【详解】
解:当E点与A点重合时,∠EAF的角度最大,但∠EAF小于90°,
所以∠EAF不可能为90°,
分两种情况讨论:
①当∠AFE=90°时,如图1所示,
根据折叠性质可知∠EFC=∠D=90°,
∴A、F、C三点共线,即F点在AC上,
∵四边形ABCD是矩形,
∴AC=,
∴AF=AC−CF=AC−CD=10−1=4,
设DE=x,则EF=x,AE=8−x,
在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,
即(8−x)2=x2+42,
解得x=3,即DE=3;
②当∠AEF=90°时,如图2所示,则∠FED=90°,
∵∠D=∠BCD=90°,DE=EF,
∴四边形EFCD是正方形,
∴DE=CD=1,
故答案为:3或1.
本题主要考查了翻折变换,以矩形为背景考查了勾股定理、折叠的对称性,同时考查了分类讨论思想,解决这类问题首先清楚折叠能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列方程求出答案.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒
【解析】
(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;
(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形; AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;
(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=, 求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4, 求得t值即可.
【详解】
(1)证明:如图1,∵AC=BC,
∴∠B=∠BAC,
∵CF平分∠ACH,
∴∠ACF=∠FCH,
∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,
∴∠FCH=∠B,
∴BE∥CF,
∵EF∥BC,
∴四边形BCFE是平行四边形
(2)解:四边形AECF是矩形,理由是:
如图2,∵E是AB的中点,AC=BC,
∴CE⊥AB,
∴∠AEC=90°,
由(1)知:四边形BCFE是平行四边形,
∴CF=BE=AE,
∵AE∥CF,
∴四边形AECF是矩形
(3)秒或5秒或2秒
分三种情况:
①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,
∴BE=BC,即2t=2 ,
t= ;
②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图4,过C作CD⊥AB于D,
∵AC=BC,AB=4,
∴BD=2,
由勾股定理得:CD= = =6,
∵EG2=EC2 , 即(2t)2=62+(2t﹣2)2 ,
t=5;
③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图5,CA=AF=BC,此时E与A重合,
∴t=2,
综上,t的值为秒或5秒或2秒;
故答案为: 秒或5秒或2秒.
本题主要考查平行四边形,矩形,菱形等四边形的性质与证明,熟悉基本定理是解题基础,本题第三问的关键在于能够分情况讨论列出方程.
25、(1)详见解析,点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0);(2)详见解析;(3)等腰直角三角形.
【解析】
(1)利用点平移的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2得到△A2B2C2;
(3)利用勾股定理的逆定理进行判断.
【详解】
解:(1)如图,将△ABC向右平移1个单位长度,再向下平移3个单位长度,则△A1B1C1即为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)
(2)如图,每个点都绕原点顺时针旋转90°,则△A2B2C2即为所作.
(3)∵C1B12=5,C1B22=5,B1B22=10,
∴C1B12+C1B22=B1B22,C1B1=C1B2,
∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.
故答案为等腰直角三角形.
此题考查平移和旋转的知识点,结合平移和旋转的规则即可作图求解,第三问考查勾股定理的应用.
26、证明见解析.
【解析】
根据平行四边形性质可得,,结合已知利用AAS易证,可得.
【详解】
证明:四边形ABCD是平行四边形,
,,
,
在和中,
,
≌,
.
本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.
题号
一
二
三
四
五
总分
得分
考试成绩/分
30
29
28
27
26
学生数/人
3
15
13
6
3
男同学
女同学
喜欢的
75
36
不喜欢的
15
24
相关试卷
这是一份2025届江苏省东海晶都双语学校数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省扬州树人学校数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省期无锡市天一实验学校数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。