2025届湖北省武汉江岸区七校联考九年级数学第一学期开学预测试题【含答案】
展开
这是一份2025届湖北省武汉江岸区七校联考九年级数学第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是( )
A.48B.63C.80D.99
2、(4分)在矩形中,下列结论中正确的是( )
A.B.C.D.
3、(4分)函数中,自变量x的取值范围是( )
A.B.C.D.
4、(4分)如果一组数据-3,x,0,1,x,6,9,5的平均数为5,则x为( )
A.22B.11C.8D.5
5、(4分)下列说法错误的是( )
A.当时,分式有意义B.当时,分式无意义
C.不论取何值,分式都有意义D.当时,分式的值为0
6、(4分)如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为( )
A.60B.16C.30D.11
7、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于( )
A.B.C.D.
8、(4分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比(黄金分割比0.618)著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比.若某人满足上述两个黄金分割比例,且腿长为103cm,头顶至脖子下端的长度为25cm,则其身高可能是( )
A.165cmB.170cmC.175cmD.180cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.
10、(4分)= ▲ .
11、(4分)y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.
12、(4分)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“0,2n+8>0,从而化简得出最后结果.
【详解】
(1),
①+②得:2x=m+1,即x=<1;
①﹣②得:4y=1﹣m,即y=<1,
解得:﹣3<m<1;
由a+2≥1得a≥﹣5,
2n-3a≥1得a≤.
所以﹣5≤a≤.
原不等式组恰好有三个整数解,则-3≤<-2,
解得-4≤n<﹣.
(2)∵﹣3<m<1,
∴m+3>0,1﹣m>0,2n+8>0
原式=m+3﹣(1-m)-(2n+8)=2m-2n-1.
本题是考查解不等式组、绝对值的化简、算术平方根的化简、相反数的综合性题目,是中考常出现的题型.理解关于a的方程组恰好有三个整数解是解决本题的关键.
15、(1)y=2x; (2);(3)点M的坐标为(,0).
【解析】
(1)先求出点A的坐标,然后设直线AO的解析式为y=kx,用待定系数法求解即可;
(2)由面积法求出BD的长,从而求出点D的坐标,然后带入y=-x+b求解即可;
(3)先求出点C的坐标,作点C关于x轴的对称点E,此时M到A、C的距离之和最小,求出直线AE的解析式,即可求出点M的坐标.
【详解】
(1)OB=4,AB=8,∠ABO=90°,
∴A点坐标为(4,8),
设直线AO的解析式为y=kx,则4k=8 ,
解得k=2,即直线AO的解析式为y=2x;
(2)OB=4,∠ABO=90°,=4,
∴DB=2,∴D点的坐标为(4,2),
把D(4,2)代入得:=6,
∴直线CD的解析式为;
(3)由直线与直线组成方程组为,
解得:,
∴点C的坐标为(2,4)
如图,设点M使得MC+MA最小,作点C关于x轴的对称点E,可得点E的坐标为(2,-4),连结MC、ME、AE,可知MC=ME,所以M到A、C的距离之和MA+MC=MA+ME,又MA+ME大于等于AE,所以当MA+ME=AE时,M到A、C的距离之和最小,此时A、M、E成一条直线,M点是直线AE与在x轴的交点.
所以设直线AE的解析式为,把A(4,8)和E(2,-4)代入得:
,
解得: ,
所以直线AE的解析式为,令得,
所以点M的坐标为(,0).
本题考查了待定系数法求函数解析式,一次函数的交点等面积法求线段的长及轴对称最短问题,熟练掌握待定系数法是解答本题的关键.
16、①矩形②
【解析】
(1)根据完美四边形的定义即可判断;
(2)根据题意画出图形,根据等腰三角形和直角三角形的性质即可求解.
【详解】
解:(1)初步运用:矩形
(2)问题探究:根据完美四边形的定义,结合题意可画出图形如下:
∵,,
∴,
∵,∴,.
∵,
∴,
∴.
在等腰中,过点作于点.
∴,由勾股定理可得:,,
∴完美四边形的周长为15.
∵,.
∴完美四边形的面积为.
此题主要考查四边形综合,解题的关键是熟知等腰梯形.等腰三角形及直角三角形的性质.
17、4
【解析】
根据矩形的性质得到BC=AD=8,∠B=90°,再根据折叠的性质得BE=EF=3,∠AFE=∠B=90°,则可计算出CE=5,然后在Rt△CEF中利用勾股定理计算FC.
【详解】
解:∵四边形是矩形,
.
,
,
;
在中,
.
本题考查了折叠的性质:叠前后图形的形状和大小不变,对应边和对应角相等.也考查了矩形的性质以及勾股定理.
18、(1);(2)3.
【解析】
(1)先化简各二次根式,再合并同类二次根式;
(2)根据二次根式的计算法则进行计算即可.
【详解】
解:(1)原式= ;
(2)原式=6-5+2=3.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.
【详解】
解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,
∴
以AC为直径的半圆面积为2π,
以AB为直径的半圆面积为,
以BC为直径的半圆面积为,
Rt△ABC的面积为6
阴影部分的面积为2π+-(-6),即为6.
此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.
20、或
【解析】
根据一元二次方程根的判别式与根的情况的关系,求解判别式中的未知数.
【详解】
一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即,当 时,方程有2个实数根,当时,方程有1个实数根(2个相等的实数根),当 时,方程没有实数根.
一元二次方程有实数根,则,可求得或.
本题考查根据一元二次方程根的判别式.
21、.
【解析】
求出不等式x+9
相关试卷
这是一份2024年湖北省武汉市四校联考九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省武汉市江岸区七一华源中学九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省武汉江岸区七校联考数学九年级第一学期开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。