|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届黑龙江省哈尔滨156中学九年级数学第一学期开学综合测试试题【含答案】
    立即下载
    加入资料篮
    2025届黑龙江省哈尔滨156中学九年级数学第一学期开学综合测试试题【含答案】01
    2025届黑龙江省哈尔滨156中学九年级数学第一学期开学综合测试试题【含答案】02
    2025届黑龙江省哈尔滨156中学九年级数学第一学期开学综合测试试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届黑龙江省哈尔滨156中学九年级数学第一学期开学综合测试试题【含答案】

    展开
    这是一份2025届黑龙江省哈尔滨156中学九年级数学第一学期开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知,则下列不等式中不正确的是( )
    A.B.C.D.
    2、(4分)方程3+9=0的根为( )
    A.3B.-3C.±3D.无实数根
    3、(4分)把函数向上平移3个单位,下列在该平移后的直线上的点是( )
    A.B.C.D.
    4、(4分)若关于x的分式方程无解,则m的值为( )
    A.一l.5B.1C.一l.5或2D.一0.5或一l.5
    5、(4分)满足下列条件的四边形不是正方形的是( )
    A.对角线相互垂直的矩形B.对角线相等的菱形
    C.对角线相互垂直且相等的四边形D.对角线垂直且相等的平行四边形
    6、(4分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM、CN、MN,若AB=,BC=,则图中阴影部分的面积为( )
    A.4B.2C.2D.2
    7、(4分)如图,在中,,,,是边上的动点,,,则的最小值为( )
    A.B.C.5D.7
    8、(4分)如图,将的一边延长至点,若,则等于( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,正方形ABOC的面积为4,反比例函数的图象过点A,则k=_______.
    10、(4分)对一种环保电动汽车性能抽测,获得如下条形统计图.根据统计图可估计得被抽检电动汽车一次充电后平均里程数为______.
    11、(4分)如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。
    12、(4分)直线y=2x+6经过点(0,a),则a=_____.
    13、(4分)当x______时,在实数范围内有意义.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:
    (1)本次共抽查学生 人,并将条形图补充完整;
    (2)捐款金额的众数是 ,中位数是 ;
    (3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?
    15、(8分)如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.

    16、(8分)已知函数,
    (1)当m取何值时抛物线开口向上?
    (2)当m为何值时函数图像与x轴有两个交点?
    (3)当m为何值时函数图像与x轴只有一个交点?
    17、(10分)计算:
    (1)
    (2)
    (3)(3+)(3﹣)
    (4)(﹣3)﹣2+﹣|1﹣2|﹣(﹣3)0
    18、(10分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,
    (1)求证:△BCE≌△ACD;
    (2)求证:CF=CH;
    (3)判断△CFH的形状并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.
    20、(4分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
    21、(4分)如果多项式是一个完全平方式,那么k的值为______.
    22、(4分)已知,化简二次根式的正确结果是_______________.
    23、(4分)如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
    25、(10分)如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.
    (1)猜想∠MAN的大小是否变化,并说明理由;
    (2)如图1,当N点恰为BC中点时,求DM的长度;
    (3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.
    26、(12分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.
    (1)求证:△ADE≌△BCE;
    (2)若AB=6,AD=4,求△CDE的周长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据不等式的性质逐项分析即可.
    【详解】
    A. ∵,∴ ,故正确;
    B. ∵,∴,故正确;
    C. ∵,∴,故正确;
    D. ∵,∴,故不正确;
    故选D.
    本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
    2、D
    【解析】
    原方程可化为:,
    ∵负数没有平方根,
    ∴原方程无实数根.
    故选D.
    3、D
    【解析】
    【分析】根据直线平移的规律得到平移后的直线解析式,然后把x=2代入平移后的解析式即可作出判断.
    【详解】由“上加下减”的原则可知,将直线y=x向上平移3个单位后,所得直线的表达式是y=x+3,
    当x=2时,y=x+3=2+3=5,
    所以点(2,5)在平移后的直线上,
    故选D.
    【点睛】本题考查了一次函数的平移以及一次函数图象上点的坐标特征,熟知函数图象平移的法则是解答此题的关键.
    4、D
    【解析】
    方程两边都乘以x(x-1)得:(2m+x)x-x(x-1)=2(x-1),即(2m+1)x=-6,①
    ①∵当2m+1=0时,此方程无解,∴此时m=-0.2,
    ②∵关于x的分式方程无解,∴x=0或x-1=0,即x=0,x=1.
    当x=0时,代入①得:(2m+1)×0=-6,此方程无解;
    当x=1时,代入①得:(2m+1)×1=-6,解得:m=-1.2.
    ∴若关于x的分式方程无解,m的值是-0.2或-1.2.故选D.
    5、C
    【解析】
    A.对角线相互垂直的矩形是正方形,故本项正确;B. 对角线相等的菱形是正方形,故本项正确;C.对角线互相垂直、平分、且相等的四边形才是正方形,故本项错误;D. 对角线垂直且相等的平行四边形是正方形,故本项正确.故选C.
    6、B
    【解析】
    根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式列式计算即可得解.
    【详解】
    ∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,
    ∴矩形绕中心旋转180阴影部分恰好能够与空白部分重合,
    ∴阴影部分的面积等于空白部分的面积,
    ∴阴影部分的面积=×矩形的面积,
    ∵AB=,BC=
    ∴阴影部分的面积=××=2.
    故选B.
    本题考查了矩形的性质,主要利用了矩形的中心对称性,判断出阴影部分的面积等于矩形的面积的一半是解题的关键.
    7、B
    【解析】
    先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.
    【详解】
    如图,连接PC.
    ∵在△ABC中,AC=6,BC=8,AB=10,
    ∴AB2=AC2+BC2,
    ∴∠C=90°.
    又∵PE⊥AC于点E,PF⊥BC于点F.
    ∴∠CEP=∠CFP=90°,
    ∴四边形PECF是矩形.
    ∴PC=EF.
    ∴当PC最小时,EF也最小,
    即当PC⊥AB时,PC最小,
    ∵BC•AC=AB•PC,即PC=,
    ∴线段EF长的最小值为.
    故选B.
    本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.
    8、A
    【解析】
    根据平行四边形的对角相等得出∠C=∠BAD,再根据平角等于180°列式求出∠BAD=110°,即可得解.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠C=∠BAD,
    ∵∠EAD=70°,
    ∴∠BAD=180°-∠EAD=110°,
    ∴∠C=∠BAD=110°.
    故选A.
    本题考查了平行四边形的对角相等的性质,是基础题,熟记平行四边形的性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-4
    【解析】
    试题分析:反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为.
    解:依题意得,
    又∵图象位于第二象限,

    ∴.
    考点:反比例函数中k的几何意义
    点评:本题属于基础应用题,只需学生熟练掌握反比例函数中k的几何意义,即可完成.
    10、165.125千米.
    【解析】
    根据加权平均数的定义列式进行求解即可.
    【详解】
    估计被抽检电动汽车一次充电后平均里程数为:
    165.125(千米),
    故答案为165.125千米.
    本题考查了条形统计图的知识以及加权平均数,能准确分析条形统计图并掌握加权平均数的计算公式是解此题的关键.
    11、1或2
    【解析】
    当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。
    【详解】
    如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。
    易证△BDH是等边三角形,DH=BD, ∠FDH=∠EDB ,DF=DE
    ∴△FDH≌△EDB
    ∴FH=BE,∠FHD=∠B=60°
    在等边△BDH中∠DHB=60°
    ∴∠CHF=60°
    ∴MH=MH,∠CHM=∠MHD=60°,DH=CH,
    ∴△CHM≌△DHM
    ∴CM=DM,
    ∵ CM=DM,CH=BH
    ∴ MH//BD,
    ∵CD⊥AB
    ∴MH⊥CD
    ∴∠CMF=90°



    BE==1
    同理可证,当DF在CD左侧时
    BE==2
    综上所诉,BE=1或2
    灵活构造三角形全等,及中位线,勾股定理,等边三角形的性质是解题的关键。
    12、6
    【解析】
    直接将点(0,a)代入直线y=2x+6,即可得出a=6.
    【详解】
    解:∵直线y=2x+6经过点(0,a),将其代入解析式
    ∴a=6.
    此题主要考查一次函数解析式的性质,熟练掌握即可得解.
    13、x≥-1且x≠1.
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.
    【详解】
    解:根据二次根式的意义,被开方数x+1≥0,解得x≥-1;
    根据分式有意义的条件,x-1≠0,解得x≠1,
    所以,x取值范围是x≥-1且x≠1
    故答案为:x≥-1且x≠1.
    本题考查二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)10,将条形图补充完整见解析;(2)众数是10,中位数是12.1;(3)捐款20元及以上(含20元)的学生有187人.
    【解析】
    分析:(1)由题意可知,捐款11元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款1、11、20、21元的人数可得捐10元的人数;
    (2)从条形统计图中可知,捐款10元的人数最多,可知众数,将这组数据按照从小到大的顺序排列,处于中间位置的数就是这组数据的中位数;
    (3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
    详解:(1)本次抽查的学生有:14÷28%=10(人),则捐款10元的有10﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:

    故答案为:10;
    (2)由条形图可知,捐款10元人数最多,故众数是10;
    将这组数据按照从小到大的顺序排列,中间两个数据分别是10,11,所以中位数是(10+11)÷2=12.1.
    故答案为:10,12.1;
    (3)捐款20元及以上(含20元)的学生有:810×=187(人).
    点睛:本题主要考查了条形统计图,扇形统计图,众数和中位数,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    15、见解析
    【解析】
    图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=,EF=,FC=,借助勾股定理确定F点.
    【详解】
    解:如图:
    本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直是解题的关键.
    16、(1);(2)且;(3)或
    【解析】
    (1)开口方向向上,即m-1>0,然后求解即可;
    (2)当与x轴有两个交点,即对应的一元二次方程的判别式大于零;
    (3)当与x轴有一个交点,即对应的一元二次方程的判别式等于零或者本身就是一次函数.
    【详解】
    解:(1)∵,
    ∴.
    (2)且,

    ∴且.
    (3)或,
    ∴或.
    本题考查了二次函数和一元二次方程的关系,特别是与x轴交点的个数与方程的判别式的关系是解答本题的关键.
    17、(1)-;(2)5;(3)4;(5).
    【解析】
    (1)先把二次根式化为最简二次根式,然后合并即可;
    (2)利用完全平方公式和二次根式的乘法法则运算;
    (3)利用平方差公式计算;
    (4)根据负整数指数幂的意义、零指数幂的意义和绝对值的意义计算.
    【详解】
    解:(1)原式=2﹣2+﹣3
    =;
    (2)原式=2﹣2+3+6
    =5﹣2+2
    =5;
    (3)原式=9﹣5
    =4;
    (4)原式=+2+1﹣2﹣1
    =.
    本题考查了二次根式的四则混合运算,掌握运算法则是解决本题的关键.
    18、(1)证明见解析;(2)证明见解析;(3)△CFH是等边三角形,理由见解析.
    【解析】
    (1)利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;
    (2)利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.
    (3)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.
    【详解】
    解:(1)∵∠BCA=∠DCE=60°,
    ∴∠BCE=∠ACD.
    又BC=AC、CE=CD,
    ∴△BCE≌△ACD.
    (2)∵△BCE≌△ACD,
    ∴∠CBF=∠CAH.
    ∵∠ACB=∠DCE=60°,
    ∴∠ACH=60°.
    ∴∠BCF=∠ACH.
    又BC=AC,
    ∴△BCF≌△ACH.
    ∴CF=CH.
    (3)∵CF=CH,∠ACH=60°,
    ∴△CFH是等边三角形.
    本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,1种情况进行讨论.
    【详解】
    解:如图所示:
    故答案是:1.
    本题考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.
    20、36°
    【解析】
    由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
    【详解】
    ∵五边形ABCDE是正五边形,
    ∴∠B=108°,AB=CB,
    ∴∠ACB=(180°﹣108°)÷2=36°;
    故答案为36°.
    21、8或-4
    【解析】
    根据完全平方公式的定义即可求解.
    【详解】
    =为完全平方公式,故=±6,
    即得k=8或-4.
    此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.
    22、
    【解析】
    由题意:-a3b≥0,即ab≤0,
    ∵a<b,
    ∴a≤0<b;
    所以原式=|a|=-a.
    23、36
    【解析】
    根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.
    【详解】
    解:据E、F是CA、CB的中点,即EF是△CAB的中位线,
    ∴EF=AB,
    ∴AB=2EF=2×18=36.
    故答案为36.
    本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    先根据题意画出图形,写出已知,求证,然后通过平行线的性质得出∠1=∠2,再利用SAS证明△ABC≌△CDA,则有∠3=∠4,进一步得出AD∥BC,最后利用两组对边分别平行的四边形为平行四边形即可证明.
    【详解】
    已知:如图,在四边形ABCD中,AB∥CD,AB=CD.
    求证:四边形ABCD是平行四边形.
    证明:连接AC,如图所示:
    ∵AB∥CD,
    ∴∠1=∠2,
    在△ABC和△CDA中,

    ∴△ABC≌△CDA(SAS),
    ∴∠3=∠4,
    ∴AD∥BC,
    ∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
    本题主要考查平行四边形的判定,全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形和平行线的判定及性质是解题的关键.
    25、(1)∠MAN的大小没有变化,理由见解析;(2);(3).
    【解析】
    (1)由折叠知AD=AE、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,再证Rt△BAN≌Rt△EAN得∠BAN=∠EAN=∠BAE,根据∠MAN=∠EAM+∠EAN=(∠DAE+∠BAE)可得答案;
    (2)由题意知EN=BN=CN=1,设DM=EM=x,则MC=2-x、MN=1+x,在Rt△MNC中,由MC2+CN2=MN2列出关于x的方程求解可得;
    (3)将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,由旋转知DG=BQ=,AG=AQ,∠ADG=∠ABQ=∠ADB=45°,∠BAQ=∠DAG,证△GAH≌△QAH得GH=QH,设GH=QH=a,得BD=AB=2,BQ=,DQ=,DH=-a,在Rt△DGH中,由DG2+DH2=GH2可得关于a的方程,解之可得答案.
    【详解】
    (1)∠MAN的大小没有变化,
    ∵将△ADM沿AM折叠得到△AME,
    ∴△ADM≌△AEM,
    ∴AD=AE=2、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,
    又∵AD=AB=2、∠D=∠B=90°,
    ∴AE=AB、∠B=∠AEM=∠AEN=90°,
    在Rt△BAN和Rt△EAN中,
    ∵,
    ∴Rt△BAN≌Rt△EAN(HL),
    ∴∠BAN=∠EAN=∠BAE,
    则∠MAN=∠EAM+∠EAN=∠DAE+∠BAE=(∠DAE+∠BAE)=∠BAD=45°,
    ∴∠MAN的大小没有变化;
    (2)∵N点恰为BC中点,
    ∴EN=BN=CN=1,
    设DM=EM=x,则MC=2﹣x,
    ∴MN=ME+EN=1+x,
    在Rt△MNC中,由MC2+CN2=MN2可得(2﹣x)2+12=(1+x)2,
    解得:x=,即DM=;
    (3)如图,将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,
    则△ABQ≌△ADG,
    ∴DG=BQ=、AG=AQ、∠ADG=∠ABQ=∠ADB=45°、∠BAQ=∠DAG,
    ∵∠MAN=∠BAD=45°,
    ∴∠BAQ+∠DAM=∠DAG+∠DAM=∠GAH=45°,
    则∠GAH=∠QAH,
    在△GAH和△QAH中,
    ∵,
    ∴△GAH≌△QAH(SAS),
    ∴GH=QH,
    设GH=QH=a,
    ∵BD=AB=2,BQ=,
    ∴DQ=BD﹣BQ=,
    ∴DH=﹣a,
    ∵∠ADG=∠ADH=45°,
    ∴∠GDH=90°,
    在Rt△DGH中,由DG2+DH2=GH2可得()2+(﹣a)2=a2,
    解得:a=,即QH=.
    本题主要考查四边形的综合问题,解题的关键是熟练掌握正方形的性质、全等三角形的判定与性质及旋转的性质等知识点.
    26、(1)证明见解析;(2)1.
    【解析】
    (1)由全等三角形的判定定理SAS即可证得结论;
    (2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.
    【详解】
    (1)在矩形ABCD中,AD=BC,∠A=∠B=90°.
    ∵E是AB的中点,
    ∴AE=BE,
    在△ADE与△BCE中,

    ∴△ADE≌△BCE(SAS);
    (2)由(1)知:△ADE≌△BCE,则DE=EC,
    在直角△ADE中,AE=4,AE=AB=3,
    由勾股定理知,DE==5,
    ∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=1.
    本题考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
    题号





    总分
    得分
    相关试卷

    2024年黑龙江省哈尔滨市尚志市九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份2024年黑龙江省哈尔滨市尚志市九年级数学第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省哈尔滨南岗区数学九年级第一学期开学调研试题【含答案】: 这是一份2024年黑龙江省哈尔滨南岗区数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黑龙江省哈尔滨市哈尔滨风华中学数学九年级第一学期开学达标检测试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市哈尔滨风华中学数学九年级第一学期开学达标检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map