2025届河南省信阳市第九中学数学九上开学质量检测试题【含答案】
展开
这是一份2025届河南省信阳市第九中学数学九上开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为( )
A.10B.7或10C.4D.7或4
2、(4分)已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
A.4B.5C.6D.7
3、(4分)下列直线与一次函数的图像平行的直线是( )
A.;B.;C.;D..
4、(4分)下列从左到右的变形,是因式分解的是
A.B.
C.D.
5、(4分)在平行四边形ABCD中,∠A=55°,则∠D的度数是( )
A.105°B.115°C.125°D.55°
6、(4分)甲、乙、丙、丁4对经过5轮选拔,平均分都相同,而方差依次为0.1、0.8、1.6、1.1.那么这4队中成绩最稳定的是( )
A.甲队B.乙队C.丙队D.丁队
7、(4分)下列各式从左到右的变形中,是因式分解的为( )
A.x(a-b)=ax-bxB.x2-1=(x-1)(x+1)
C.x2-1+y2=(x-1)(x+1)+y2D.ax+bx+c=x(a+b)+c
8、(4分)如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么△ABP的面积与点P运动的路程之间的函数图象大致是( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次函数的函数值自变量之间的部分对应值如下表:
此函数图象的对称轴为_____
10、(4分)如图,在ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________ .
11、(4分)四边形ABCD中,,,,,则______.
12、(4分)(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 .
13、(4分)分解因式=____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.
15、(8分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=1.
①求∠C的度数,②求CE的长.
16、(8分)如图①,正方形ABCD中,点E、F都在AD边上,且AE=FD,分别连接BE、FC,对角线BD交FC于点P,连接AP,交BE于点G;
(1)试判断AP与BE的位置关系;
(2)如图②,再过点P作PH⊥AP,交BC于点H,连接AH,分别交BE、BD于点N,M,请直接写出图②中有哪些等腰三角形.
17、(10分)如图在△ABC中,AD是BC边上的高,CE是AB边上的中线,且∠B=2∠BCE,求证:DC=BE.
18、(10分)在中, ,以点为旋转中心,把逆时针旋转,得到,连接,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.
20、(4分)不等式 的解集为________.
21、(4分)要使分式有意义,x需满足的条件是 .
22、(4分)如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.
23、(4分)若关于的方程有增根,则的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小明从中随机抽取一张卡片是足球社团B的概率是 .
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
25、(10分)如图,在矩形中,对角线、交于点,且过点作,过点作,两直线相交于点.
(1)求证:四边形是菱形;
(2)若,求矩形的面积.
26、(12分)问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
类比探究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
(2)△DEF是否为正三角形?请说明理由.
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时
【详解】
当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C
本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断
2、C
【解析】
根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为
故选C.
3、B
【解析】
【分析】设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.据此可以判断.
【详解】A.直线 与直线相交,故不能选;
B.直线 与直线平行,故能选;
C.直线 与直线重合,故不能选;
D.直线 与直线相交,故不能选.
故选:B
【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数性质.
4、D
【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
【详解】
根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.
故选D.
本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.
5、C
【解析】
根据平行四边形的性质解答即可.
【详解】
∵平行四边形的两组对边平行,∴∠A+∠D=180°, ∵∠A=55°,∴∠D=180°-55°=125°,故选C.
本题考查了平行四边形的性质.此题比较简单,注意熟记定理是解题的关键.
6、A
【解析】
先比较四个队的方差的大小,根据方差的性质解答即可.
【详解】
解:甲、乙、丙、丁方差依次为0.1、0.8、1.6、1.1,所以这4队中成绩最稳定的是甲,
故选:A.
本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
7、B
【解析】
根据因式分解的的定义即可完成本题。
【详解】
解:A选项没有写成因式积的形式,故A错;
B选项写成因式积的形式,故B正确;
C选项没有写成因式积的形式,故C错;
D选项没有写成因式积的形式,故D错;
故答案为B.
本题考查了因式分解,准确的理解因式分解的定义是解答本题的关键。
8、B
【解析】
首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的高一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.
【详解】
从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);
因为从点C到点D,△ABP的面积一定:2×1÷2=1,
所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),
所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:
.
故选B.
此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x=2.
【解析】
根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.
【详解】
∵x=0、x=4时的函数值都是−1,
∴此函数图象的对称轴为直线x==2,
即直线x=2.
故答案为:直线x=2.
此题考查二次函数的性质,解题关键在于利用其对称性求解.
10、
【解析】
先由平行四边形对边相等得AD=BC, 作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.
【详解】
如图,过D作DE⊥AB交AB于E,
∵四边形ABCD为平行四边形,∴AD=BC=2,
△ADE为等腰直角三角形,
,
根据勾股定理得 ,
,
,
,
即AB和CD之间的距离为,
故答案为:
本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.
11、2
【解析】
画出图形,作CE⊥AD,根据矩形性质和勾股定理求出DE,再求BC.
【详解】
已知,如图所示,作CE⊥AD,则=,
因为,,
所以,==,
所以,四边形ABCE是矩形,
所以,AE=BC,CE=AB=3,
在Rt△CDE中,
DE=,
所以,BC=AE=AE-DE=6-4=2.
故答案为2
本题考核知识点:矩形的判定,勾股定理. 解题关键点:构造直角三角形.
12、2
【解析】
解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.
13、.
【解析】
多项式有两项,两项都含有相同的因式x,所以提取提取公因式x即可.
【详解】
= x(2x-1).
故答案为x(2x-1).
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)利用菱形的性质得到AD=CD,∠A=∠C,进而利用AAS证明两三角形全等;
(2)根据△ADE≌△CDF得到AE=CF,结合菱形的四条边相等即可得到结论.
试题解析:证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥BA,DF⊥CB,∴∠AED=∠CFD=90°,在△ADE和△CDE,∵AD=CD,∠A=∠C,∠AED=∠CFD=90°,∴△ADE≌△CDE;
(2)∵四边形ABCD是菱形,∴AB=CB,∵△ADE≌△CDF,∴AE=CF,∴BE=BF,∴∠BEF=∠BFE.
点睛:本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS证明两三角形全等.
15、①∠C=10度;②CE=.
【解析】
根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=10°,根据10°角所对直角边等于斜边的一半及勾股定理即可得到CE的长.
【详解】
(1)∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC.
∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=10°.
(2)∵∠ABD=10°,∴BD=2AD=6,∴CD=DB=6,∴DE=1,∴CE==.
本题考查了线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
16、(1)垂直,理由见解析;(2)△ABD,△BCD是等腰△,△APH是等腰△,△PHC 是等腰△.
【解析】
(1)由题意可证△ADP≌△DPC,△AEB≌△DFC可得∠DAP=∠DCF=∠ABE,通过角的换算可证AP⊥BE.
(2)根据正方形的性质可得△ABD,△BCD是等腰△,由AP⊥PH,∠ABC=90°可得A,B,H,P四点共圆,可证△APH,△PHC是等腰△
【详解】
(1)垂直,
理由是∵四边形ABCD是正方形,
∴AD=CD=AB,∠BAD=∠CDA=90°,∠ADB=∠CDB=45°,且DP=DP,
∴△ADP≌△CDP,
∴∠DCF=∠DAP,AP=PC
又AE=DF,∠BAD=∠CDA=90°,AB=CD,
∴△ABE≌△DCF,
∴∠ABE=∠DCF,
∴∠ABE=∠DAP
∵∠ABE+∠AEB=90°,
∴∠DAP+∠AEB=90°,即∠AGE=90°,
∴AP⊥BE
(2)∵AB=BC=CD=DA
∴△ABD,△BCD是等腰△
∵AP⊥PH,∠ABC=90°
∴A,B,H,P四点共圆
∴∠PAH=∠DBC=45°
∴∠PAH=∠PHA=45°
∴PA=PH
∴△APH是等腰△
∵AP=PH,AP=PC,
∴PC=PH
∴△PHC 是等腰△.
本题考查了正方形的性质,全等三角形的性质和判定,关键是利用这些性质解决问题.
17、见解析.
【解析】
连接DE.想办法证明∠BCE=∠DEC即可解决问题.
【详解】
证明:连接DE.
∵AD是BC边上的高,CE是AB边上的中线,
∴∠ADB=90°,AE=BE,
∴BE=AE=DE,
∴∠EBD=∠BDE,∵∠B=2∠BCE,
∴∠BDE=2∠BCE,
∵∠BDE=∠BCE+∠DEC,
∴∠BCE=∠DEC,
∴BE=DC.
本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、
【解析】
由旋转的性质得,由30°直角三角形的性质得,根据勾股定理,即可求出的长度.
【详解】
解:在中,,
∵,
又是由逆时针旋转得到的,
,
∴;
本题考查了旋转的性质,直角三角形的性质,以及勾股定理,解题的关键是熟练掌握旋转的性质、直角三角形、以及勾股定理进行解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.
【详解】
如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.
∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.
故答案为:2.
本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.
20、
【解析】
首先去分母,再系数化成1即可;
【详解】
解:去分母得: -x≥3
系数化成1得: x≤-3
故答案为:x≤-3
本题考查了解一元一次不等式,主要考查学生的计算能力.
21、x≠1
【解析】
试题分析:分式有意义,分母不等于零.
解:当分母x﹣1≠0,即x≠1时,分式有意义.
故答案是:x≠1.
考点:分式有意义的条件.
22、
【解析】
根据一次函数图象的平移规律:上加下减,左加右减进行平移即可得出答案.
【详解】
将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为,即,
故答案为:.
本题主要考查一次函数图象的平移,掌握一次函数图象的平移规律是解题的关键.
23、;
【解析】
先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.
【详解】
去分母得:2x+1-x-2=m
解得:x=m+1
∵分式方程有增根
∴x=-2
∴m+1=-2
解得:m=-1
故答案为;-1.
本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析,.
【解析】
(1)直接根据概率公式求解;
(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.
【详解】
(1)小明从中随机抽取一张卡片是足球社团B的概率=;
(2)列表如下:
由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,
所以小明两次抽取的卡片中有一张是科技社团D的概率为.
本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率
25、(1)见解析;(2)矩形的面积.
【解析】
(1)根据邻边相等的平行四边形是菱形即可判断;
(2)利用勾股定理求出的长即可解决问题.
【详解】
(1)证明:∵,,
∴四边形是平行四边形,
∵四边形是矩形,
∴,
∴四边形是菱形;
(2)∵四边形是菱形
∴,
四边形是矩形,
,,
∴,
∴
∴矩形的面积.
本题考查矩形的性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
26、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
【解析】
试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、
(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;
(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b, 在RtΔABG中,由勾股定理即可得出结论.
试题解析: (1)△ABD≌△BCE≌△CAF;理由如下:
∵△ABC是正三角形,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,
∴∠ABD=∠BCE,
在△ABD和△BCE中,
,
∴△ABD≌△BCE(ASA);
(1)△DEF是正三角形;理由如下:
∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形;
(3)作AG⊥BD于G,如图所示:
∵△DEF是正三角形,
∴∠ADG=60°,
在Rt△ADG中,DG=b,AG=b,
在Rt△ABG中,c1=(a+b)1+(b)1,
∴c1=a1+ab+b1.
考点:1.全等三角形的判定与性质;1.勾股定理.
题号
一
二
三
四
五
总分
得分
批阅人
…
0
1
4
…
…
4
…
A
B
C
D
A
(B,A)
(C,A)
(D,A)
B
(A,B)
(C,B)
(D,B)
C
(A,C)
(B,C)
(D,C)
D
(A,D)
(B,D)
(C,D)
相关试卷
这是一份2025届河南省郑州师院附属外语中学数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河南省信阳市第九中学数学九年级第一学期开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北恩施崔坝中学数学九上开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。