2025届河南省开封市九年级数学第一学期开学达标检测试题【含答案】
展开这是一份2025届河南省开封市九年级数学第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于一次函数y=x﹣1,下列说法:①图象与y轴的交点坐标是(0,﹣1);②y随x的增大而增大;③图象经过第一、二、三象限; ④直线y=x﹣1可以看作由直线y=x向右平移1个单位得到.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
2、(4分)若解方程会产生增根,则m等于( )
A.-10B.-10或-3C.-3D.-10或-4
3、(4分)下列由左到右变形,属于因式分解的是
A.B.
C.D.
4、(4分)已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:
①上升20min时,两个气球都位于海拔25m的高度;
②1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60);
③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m.
其中,说法正确的个数是( )
A.0B.1C.2D.3
5、(4分)在中,若是的正比例函数,则值为
A.1B.C.D.无法确定
6、(4分)若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是( )
A.甲B.乙
C.同时到达D.无法确定
7、(4分)若在实数范围内有意义,则x的取值范围是( )
A.x>-4B.x≥-4C.x>-4且x≠1D.x≥-4且x≠-1
8、(4分)若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,并且x1<0<x2<x3,则下列各式中正确的是( )
A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,,则__________.
10、(4分)当________时,分式的值为0.
11、(4分)抛物线,当时,的取值范围是__________.
12、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
13、(4分)分解因式b2(x﹣3)+b(x﹣3)=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)下列关于反比例函数y=的性质,描述正确的有_____。(填所有描述正确的选项)
A. y随x的增大而减小
B. 图像关于原点中心对称
C. 图像关于直线y=x成轴对称
D. 把双曲线y=绕原点逆时针旋转90°可以得到双曲线y=-
(2)如图,直线AB、CD经过原点且与双曲线y=分别交于点A、B、C、D,点A、C的横坐标分别为m,n(m>n>0),连接AC、CB、BD、DA。
①判断四边形ACBD的形状,并说明理由;
②当m、n满足怎样的数量关系时,四边形ACBD是矩形?请直接写出结论;
③若点A的横坐标m=3,四边形ACBD的面积为S,求S与n之间的函数表达式。
15、(8分)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y= 的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点 B、C,如果四边形OBAC是正方形.
(1)求一次函数的解析式。
(2)一次函数的图象与y轴交于点D.在x轴上是否存在一点P,使得PA+PD最小?若存在,请求出P点坐标及最小值;若不存在,请说明理由。
16、(8分)如图,直线l1过点A(0,4),点D(4,0),直线l2:与x轴交于点C,两直线,相交于点B.
(1)求直线的解析式和点B的坐标;
(2)求△ABC的面积.
17、(10分)某校七、八年级各有学生400人,为了解这两个年级普及安全教育的情况,进行了抽样调查,过程如下
选择样本,收集数据从七、八年级各随机抽取20名学生,进行安全教育考试,测试成绩(百分制)如下:
七年级 85 79 89 83 89 98 68 89 79 59
99 87 85 89 97 86 89 90 89 77
八年级 71 94 87 92 55 94 98 78 86 94
62 99 94 51 88 97 94 98 85 91
分组整理,描述数据
(1)按如下频数分布直方图整理、描述这两组样本数据,请补全八年级20名学生安全教育频数分布直方图;
(2)两组样本数据的平均数、中位数、众数、优秀率如下表所示,请补充完整;
得出结论,说明理由.
(3)整体成绩较好的年级为___,理由为___(至少从两个不同的角度说明合理性).
18、(10分)解方程:
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于 x 的方程 x2+5x+m=0 的一个根为﹣2,则另一个根是________ .
20、(4分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________(只添一个即可),使四边形ABCD是平行四边形.
21、(4分)某小组7名同学的英语口试成绩(满分30分)依次为,,,,,,,则这组数据的中位数是_______.
22、(4分)不等式组的解集是x>4,那么m的取值范围是_____.
23、(4分)请写出一个比2小的无理数是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简求值:,从-1,0, 1,2中选一个你认为合适的m值代入求值.
25、(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某单位计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多700元,花3000元购买A种设备和花7200元购买B种设备的数量相同.
(1)求A种、B种设备每台各多少元?
(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于17000元,求A种设备至少要购买多少台?
26、(12分)如图,利用一面墙(墙的长度不限),用20m长的篱笆围成一个面积为50m2矩形场地,求矩形的宽BC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
①将x=0代入一次函数解析式中求出y值,由此可得出结论①符合题意;②由k=1>0结合一次函数的性质即可得出y随x的增大而增大,即结论②符合题意;③由k、b的正负结合一次函数图象与系数的关系即可得出该函数图象经过第一、三、四象限,即结论③不符合题意;④根据平移“左加右减”即可得出将直线y=x向右平移1个单位得到的直线解析式为y=x-1,即结论④符合题意.综上即可得出结论.
【详解】
①当x=0时,y=-1,
∴图象与y轴的交点坐标是(0,-1),结论①符合题意;
②∵k=1>0,
∴y随x的增大而增大,结论②符合题意;
③∵k=1>0,b=-1<0,
∴该函数图象经过第一、三、四象限,结论③不符合题意;
④将直线y=x向右平移1个单位得到的直线解析式为y=x-1,
∴结论④符合题意.
故选:C.
考查了一次函数的性质、一次函数图象与系数的关系以及一次函数图象与几何变换,逐一分析四条结论是否符合题意是解题的关键.
2、D
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程求出m的值即可.
【详解】
去分母得:2x-2-5x-5=m,即-3x-7=m,
由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,
把x=1代入整式方程得:m=-10,把x=-1代入整式方程得:m=-4,
故选:D.
考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
3、A
【解析】
根据因式分解是把一个整式分解成几个整式乘积的形式由此即可解答.
【详解】
选项A,符合因式分解的定义,本选项正确;
选项B,结果不是整式的积的形式,不是因式分解,本选项错误;
选项C,结果不是整式的积的形式,不是因式分解,本选项错误;
选项D,结果不是整式的积的形式,因而不是因式分解,本选项错误.
故选A.
本题主要考查了因式分解的定义,正确理解因式分解的定义是解题关键.
4、D
【解析】
根据一次函数的图象和性质,由两点坐标分别求出1、2号探测球所在位置的海拔y关于上升时间x的函数关系式,结合图象即可判定结论是否正确.
【详解】
从图象可知,上升20min时,两个气球都位于海拔25m的高度,故①正确;
1号探测气球的图象过 设=kx+b,代入点坐标可求得关系式是=x+5(0≤x≤60),同理可求出,2号球的函数解析式为,故②正确;
利用图象可以看出,20min后,1号探测气球的图象始终在2号探测气球的图象的上方,而且都随着x的增大而增大,所以当x=50时,两个气球的海拔高度差m有最大值,此时m=,代入x=50,得m=15,故③正确.
考查了一次函数的图象和性质,一次函数解析式的求法,图象增减性的综合应用,熟记图象和性质特征是解题的关键.
5、A
【解析】
先根据正比例函数的定义列出关于的方程组,求出的值即可.
【详解】
函数是正比例函数,
,
解得,
故选.
本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.
6、B
【解析】
设从A地到B地的路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。
【详解】
解:设从到达目的地路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,由题意得,
而对于乙: 解得:
因为当a≠b时,(a+b)2>4ab,
所以<1
所以t甲>t乙,即甲先到达,故答案为B.
本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,本题解题的关键是表示出甲乙所用时间,并选择适当的方法比较出二者的大小.
7、D
【解析】
直接利用二次根式有意义的条件结合分式有意义的条件进行求解即可得.
【详解】
若在实数范围内有意义,
则x+4≥0且x+1≠0,
解得:x≥-4且x≠-1,
故选D.
本题考查了二次根式有意义的条件和分式有意义的条件,正确把握相关知识是解题关键.
8、B
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.
【详解】
∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.
∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.
故选B.
本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
把x与y代入计算即可求出xy的值
【详解】
解:当,时,
∴ ;
故答案为:1.
此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.
10、5
【解析】
根据分式值为零的条件可得x-5=0且2x+1≠0,再解即可
【详解】
由题意得:x−5=0且2x+1≠0,
解得:x=5,
故答案为:5
此题考查分式的值为零的条件,难度不大
11、
【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴 ,判断范围内函数的增减性,进而计算y的范围.
【详解】
解:根据二次函数的解析式可得
由a=2>0,可得抛物线的开口向上
对称轴为:
所以可得在范围内,二次函数在 ,y随x的增大而减小,在 上y随x的增大而增大.
所以当 取得最小值,最小值为:
当取得最大值,最大值为:
所以
故答案为
本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.
12、1.
【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
13、b(x﹣3)(b+1)
【解析】
用提公因式法分解即可.
【详解】
原式= b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).
故答案为:b(x﹣3)(b+1)
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
三、解答题(本大题共5个小题,共48分)
14、(1)ABCD;(2)①见解析;②∴当时,四边形ACBD是矩形;
③S=
【解析】
(1)由反比例函数的性质可得.
(2)①根据对称的性质可得四边形ABCD的对角线互相平分,则一定是平行四边形;②由四边形ACBD是矩形时:OA=OC得出 利用长度公式得 可得关系式:整理化简即可。
③可得A(3,2)进而求出 的表达式,代入S=可得S与n的关系式.
【详解】
解(1)ABCD均正确
(2)①根据对称性可知:OA=OB,OC=OD,则四边形ACBD是平行四边形。
②当四边形ACBD是矩形时:OA=OC
∴
∵点A、C的横坐标分别为m,n
∴
∴
∴
∴
∵m>n>0
∴
∴当时,四边形ACBD是矩形
③∵
当m=3时,A(3,2)
∴
=
=
=
∴四边形ACBD的面积为S=
本题考查了反比例函数及几何图形的综合,掌握反比例函数的性质是解题的关键.
15、(1)y=x+1;(2)(,0)
【解析】
(1)若四边形OBAC是正方形,那么点A的横纵坐标相等,代入反比例函数即可求得点A的坐标,进而代入一次函数即可求得未知字母k.
(2)在y轴负半轴作OD′=OD,连接AD′,与x轴的交点即为P点的坐标,进而求出P点的坐标.
【详解】
(1)∵四边形OBAC是正方形,
∴S四边形OBAC=AB =OB=9,
∴点A的坐标为(3,3),
∵一次函数y=kx+1的图象经过A点,
∴3=3k+1,
解得k=,
∴一次函数的解析式y=x+1,
(2)y轴负半轴作OD′=OD,连接AD′,如图所示,AD′与x轴的交点即为P点的坐标,
∵一次函数的解析式y=x+1,
∴D点的坐标为(0,1),
∴D′的坐标为(0,−1),
∵A点坐标为(3,3),
设直线AD′的直线方程为y=mx+b,
即 ,
解得m= ,b=−1,
∴直线AD′的直线方程为y=x−1,
令y=0,解得x= ,
∴P点坐标为(,0)
此题考查反比例函数综合题,解题关键在于熟练掌握一次函数和反比例函数的性质.
16、(1)直线的解析式为y=-x+1,点B的坐标为(2,2);(2).
【解析】
分析:(1)根据题意l1经过A、B两点,又直线的解析式为y=ax+b,代入可得a、b的值.
(2)由图可知△ACB的面积为△ACD与△CBD的差,所以求得△ACD与△BCD的面积即可知△ACB的面积.
详解:(1)设l1的解析式为:y=ax+b.
∵l1经过A(0,1),D(1,0),
∴将A、D代入解析式得:b=1,1a+b=0,
∴a=﹣1,b=1.
即l1的解析式为:y=﹣x+1,
l1与l2联立,得:B(2,2);
(2)C是l2与x轴的交点,在y=x+1中所以令y=0,得:C(﹣2,0),
∴|CD|=3,|AO|=1,B到x轴的距离为2.
∵AO⊥CD,
∴△ACD的面积为|AO|•|CD|=×1×3=12 ,
△CBD的面积为×B到x轴的距离×CD=×2×3=3 ,
∴△ABC的面积=△ACD的面积-△CBD的面积=3.
点睛:本题考查的是一次函数图象的性质,以及待定系数法确定函数解析式,类似的题一定要注意数形结合.
17、(1)见解析;(2)91.5,94,55%;(3)八年级,八年级的中位数和优秀率都高于七年级.
【解析】
(1)由收集的数据即可得;根据题意不全频数分布直方图即可;
(2)根据众数和中位数和优秀率的定义求解可得;
(3)八年级的中位数和优秀率都高于七年级即可的结论.
【详解】
(1)补全八年级20名学生安全教育频数分布直方图如图所示,
(2)八年级20名学生安全教育考试成绩按从小到大的顺序排列为:51 55 62 71 78 85 86 87 88 91 92 94 94 94 94 94 97 98 98 99
∴中位数==91.5分;
∵94分出现的次数最多,故众数为94分;
优秀率为:×100%=55%,
故答案为:91.5,94,55%;
(3)整体成绩较好的年级为八年级,理由为八年级的中位数和优秀率都高于七年级。
故答案为:八年级,八年级的中位数和优秀率都高于七年级.
此题考查条形统计图,中位数,众数,解题关键在于看懂图中数据.
18、(1)原方程无解;(1)x=6或x=-1.
【解析】
【分析】(1)先去分母,化为整式方程,解整式方程后进行检验即可得答案;
(1)利用因式分解法进行求解即可得.
【详解】(1)两边同乘(x-1),得
1=x-1-3(x-1),
解得:x=1,
检验:x=1时,x-1=0,
x=1是原方程的增根,原方程无解;
(1)因式分解,得(x-6)(x+1)=0 ,
x-6=0或x+1=0,
x=6或x=-1.
【点睛】本题考查了解分式方程以及解一元二次方程,熟练掌握分式方程的解法、注意事项以及一元二次方程的解法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
解:设方程的另一个根为n,
则有−2+n=−5,
解得:n=−3.
故答案为
本题考查一元二次方程的两根是,则
20、BO=DO.
【解析】
解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.
故答案为BO=DO.
21、1
【解析】
对于中位数,先将数据按从小到大的顺序排列,找出最中间的一个数(或最中间的两个数)即可.
【详解】
这组数据从小到大排列顺序为:23,25,25,1,27,29,30,中间一个数为1,所以这组数据的中位数为1.
故答案为:1
考核知识点:中位数.理解中位数的定义是关键.
22、m≤1
【解析】
根据不等式组解集的求法解答.求不等式组的解集.
【详解】
不等式组的解集是x>1,得:m≤1.
故答案为m≤1.
本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
23、(答案不唯一).
【解析】
根据无理数的定义写出一个即可.
【详解】
解:比2小的无理数是,
故答案为:(答案不唯一).
本题考查了无理数的定义,能熟记无理数是指无限不循环小数是解此题的关键,此题是一道开放型的题目,答案不唯一.
二、解答题(本大题共3个小题,共30分)
24、,
【解析】
根据分式的混合运算法则运算即可,注意m的值只能取1.
【详解】
解:原式=
=
=
把m=1代入得,原式=.
本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.
25、(1)每台A种设备500元,每台B种设备1元;(2)A种设备至少要购买2台.
【解析】
(1)设每台A种设备x元,则每台B种设备(x+700)元,根据数量=总价÷单价结合花3000元购买A种设备和花7200元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购买A种设备m台,则购买B种设备(20−m)台,根据总价=单价×数量结合总费用不高于17000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.
【详解】
(1)设每台A种设备x元,则每台B种设备(x+700)元,
根据题意得:,
解得:x=500,
经检验,x=500是原方程的解,
∴x+700=1.
答:每台A种设备500元,每台B种设备1元;
(2)设购买A种设备m台,则购买B种设备(20﹣m)台,
根据题意得:500m+1(20﹣m)≤17000,
解得:m≥2.
答:A种设备至少要购买2台.
本题考查了分式方程的应用以及一元一次不等式的应用,正确的理解题意是解题的关键.
26、5m
【解析】
设矩形的宽BC=xm.根据面积列出方程求解可得.
【详解】
解:设矩形的宽BC=xm.则AB=(20-2x)m,
根据题意得: x(20-2x)=50,
解得:,
答:矩形的宽为5m.
此题考查了一元二次方程的应用,列方程时要找到题目中的等量关系,所求得的解要符合实际情况.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届河南省开封市田家炳实验中学九年级数学第一学期开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河南省开封市第十中学九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省新乡、开封市名校联考九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。