|试卷下载
搜索
    上传资料 赚现金
    2025届福建省厦门市五中学数学九上开学学业水平测试模拟试题【含答案】
    立即下载
    加入资料篮
    2025届福建省厦门市五中学数学九上开学学业水平测试模拟试题【含答案】01
    2025届福建省厦门市五中学数学九上开学学业水平测试模拟试题【含答案】02
    2025届福建省厦门市五中学数学九上开学学业水平测试模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届福建省厦门市五中学数学九上开学学业水平测试模拟试题【含答案】

    展开
    这是一份2025届福建省厦门市五中学数学九上开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
    A.3cmB.4cmC.5cmD.6cm
    2、(4分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为( )
    A.45°B.15°C.10°D.125°
    3、(4分)一元二次方程4x2+1=3x的根的情况是( )
    A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根
    4、(4分)若一组数据,0,2,4,的极差为7,则的值是( ).
    A.B.6C.7D.6或
    5、(4分)若一组数据的方差是3,则的方差是( )
    A.3B.6C.9D.12
    6、(4分)如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是( )
    A.1B.2C.3D.4
    7、(4分)若x=,y=,则x2+2xy+y2=( )
    A.12B.8C.2D.
    8、(4分)当a<0,b<0时,-a+2-b可变形为( )
    A.B.-C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)比较大小:_______2(填“>”或“<”).
    10、(4分)一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.
    11、(4分)如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.
    12、(4分)如图, 和都是等腰直角三角形, ,的顶点在的斜边上,若,则____.
    13、(4分)学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解答下列各题:
    (1)计算:;
    (2)当时,求代数式的值.
    15、(8分)如图,在四边形ABCD中,∠D=90°,AB=13,BC=12,CD=4,AD=3.
    求:(1)AC的长度;
    (2)判断△ACB是什么三角形?并说明理由?
    (3)四边形ABCD的面积。
    16、(8分)某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:
    (1)这15位营销人员该月销售量的中位数是______,众数是______;
    (2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由.
    17、(10分)如图,一次函数的图象与,轴分别交于,两点,点与点关于轴对称.动点,分别在线段,上(点与点,不重合),且满足.
    (1)求点,的坐标及线段的长度;
    (2)当点在什么位置时,,说明理由;
    (3)当为等腰三角形时,求点的坐标.
    18、(10分)已知:线段a,c.
    求作:△ABC,使BC=a,AB=c,∠C=90°
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知点,关于x轴对称,则________.
    20、(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
    21、(4分)若方程的两根为,,则________.
    22、(4分)将矩形按如图所示的方式折叠,得到菱形,若,则菱形的周长为______.
    23、(4分)若二次函数y=ax2﹣bx+5(a≠5)的图象与x轴交于(1,0),则b﹣a+2014的值是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)问题情境:
    平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直
    线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
    数学探究:
    点C的坐标为______;
    求点E的坐标及直线BE的函数关系式;
    若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
    若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
    25、(10分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.
    (1)当k=1时,求点P的坐标;
    (2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;
    (3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.
    26、(12分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.
    若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?
    若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?
    在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
    详解:设CN=xcm,则DN=(8﹣x)cm,
    由折叠的性质知EN=DN=(8﹣x)cm,
    而EC=BC=4cm,
    在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
    即(8﹣x)2=16+x2,
    整理得16x=48,
    所以x=1.
    故选:A.
    点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
    2、A
    【解析】
    由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.
    【详解】
    是等边三角形,
    ,,
    四边形是正方形,
    ,,
    ,,

    .
    故选:.
    本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.
    3、A
    【解析】
    先求出△的值,再判断出其符号即可.
    【详解】
    解:原方程可化为:4x2﹣3x+1=0,
    ∵△=32﹣4×4×1=-7<0,
    ∴方程没有实数根.
    故选A.
    4、D
    【解析】
    解:根据极差的计算法则可得:x-(-1)=7或4-x=7,
    解得:x=6或x=-3.
    故选D
    5、D
    【解析】
    先根据的方差是3,求出数据的方差,进而得出答案.
    【详解】
    解:∵数据x1,x2,x3,x4,x5的方差是3,
    ∴数据2x1,2x2,2x3,2x4,2x5的方差是4×3=12;
    ∴数据的方差是12;
    故选:D.
    本题考查了方差的定义.当数据都加上一个数时,平均数也加这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数,方差变为这个数的平方倍.
    6、B
    【解析】
    过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.
    【详解】
    过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.
    ,,,.
    又,,,点坐标为
    将点坐标为代入,可得=4.
    与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为
    将点坐标为代入,可得=2. 故选B.
    本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.
    7、A
    【解析】
    直接利用完全平方公式将原式变形进而把已知数据代入求出答案.
    【详解】
    x2+2xy+y2=(x+y)2,
    把x=,y=,代入上式得:
    原式=(+)2
    =(2)2
    =1.
    故选A.
    此题主要考查了二次根式的化简求值,正确运用公式将原式变形是解题关键.
    8、C
    【解析】
    试题解析:∵a<1,b<1,
    ∴-a>1,-b>1.
    ∴-a+2-b =()2+2+()2,
    =()2.
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、<
    【解析】
    试题解析:

    故答案为:
    10、2.5
    【解析】
    先用待定系数法求出直线解析式,再将点A代入求解可得.
    【详解】
    解:将(-2,0)、(0,1)代入y=kx+b,得:,
    解得:
    ∴y=x+1,
    将点A(3,m)代入,得:

    故答案为:2.5
    本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.
    11、1:1
    【解析】
    如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.
    【详解】
    解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.
    ∵DE=AE,DF=FC,
    ∴EF∥AC,EF:AC=1:2,
    ∴S△DEF=S△DAC=×1S=S,
    同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,
    ∴四边形EFQP是平行四边形,
    ∴S平行四边形EFQP=1S,
    ∴S△TPQ=S平行四边形EFQP=2S,
    ∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,
    故答案为1:1.
    本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.
    12、6
    【解析】
    连接BD,证明△ECA≌△DCB,继而得到∠ADB=90°,然后利用勾股定理进行求解即可.
    【详解】
    连接BD,
    ∵△ACB和△ECD都是等腰直角三角形,
    ∴CE=CD,CA=CB,∠ECD=∠ACB=90°,
    ∴∠EDC=∠E=45°,∠ECA=∠DCB,
    在△ACE和△BCD中,

    ∴△ECA≌△BDC,
    ∴DB=AE=4,∠BDC=∠E=45°,
    ∴∠ADB=∠EDC+∠BDC=90°,
    ∴AD=,
    故答案为6.
    本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理等,正确添加辅助线,熟练运用相关知识是解题的关键.
    13、250
    【解析】
    由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.
    【详解】
    400÷40%=1000(人),
    1000×(1-40%-35%)=1000×25%=250(人),
    故答案为250.
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    三、解答题(本大题共5个小题,共48分)
    14、(1)(2)1.
    【解析】
    (1)根据实数的运算法则即可化简;
    (2)根据整式的运算法则进行化简即可求解.
    【详解】
    解:(1)原式.
    (2)原式,将代入得
    此题主要考查实数的运算,解题的关键是熟知实数的运算法则与整式的运算.
    15、(1)5(2)直角三角形,理由见解析(3)36
    【解析】
    在直角三角形ABD中,利用勾股定理求出BD的长,再利用勾股定理的逆定理得到三角形BCD为直角三角形,根据四边形ABCD的面积=直角三角形ABD的面积+直角三角形BCD的面积,即可求出四边形的面积.
    【详解】
    (1)在Rt△ACD中,CD=4,AD=3
    由勾股定理,得CD +AD=AC
    ∴AC= =5;
    (2)△ACD是直角三角形;
    理由如下:∵AB=13,BC=12,AC=5
    ∴BC+AC=12+5=169AB=13=169
    ∴BC+AC=AB
    ∴△ACB是Rt△,∠ACB=90°;
    (3)S四边形ABCD=S△ABC+S△ACD
    =×12×5+×4×3=30+6=36.
    此题考查勾股定理的逆定理,勾股定理,解题关键在于求出BD的长
    16、(1)210,210;(2)合理,理由见解析
    【解析】
    (1)根据中位数和众数的定义求解;
    (2)先观察出能销售210件的人数为能达到大多数人的水平即合理.
    【详解】
    解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;
    210出现的次数最多,则众数为210;
    故答案为:210,210;
    (2)合理;
    因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.
    本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    17、(1)10;(2)当点的坐标是时,;(3)点的坐标是或.
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点,的坐标,结合点与点关于轴对称可得出点的坐标,进而可得出线段的长度;
    (2)当点的坐标是时,,由点,的坐标可得出的长度,由勾股定理可求出的长度,进而可得出,通过角的计算及对称的性质可得出,,结合可证出,由此可得出:当点的坐标是时,;
    (3)分,及三种情况考虑:①当时,由(2)的结论结合全等三角形的性质可得出当点的坐标是时;②当时,利用等腰三角形的性质结合可得出,利用三角形外角的性质可得出,进而可得出此种情况不存在;③当时,利用等腰三角形的性质结合可得出,设此时的坐标是,在中利用勾股定理可得出关于的一元一次方程,解之即可得出结论.综上,此题得解.
    【详解】
    解:(1)当时,,
    点的坐标为;
    当时,,解得:,
    点的坐标为;
    点与点关于轴对称,
    点的坐标为,
    .
    (2)当点的坐标是时,,理由如下:
    点的坐标为,点的坐标为,

    .
    ,,,
    .
    和关于轴对称,
    .
    在和中,
    .
    当点的坐标是时,.
    (3)分为三种情况:
    ①当时,如图1所示,由(2)知,当点的坐标是时,

    此时点的坐标是;
    ②当时,则,

    .
    而根据三角形的外角性质得:,
    此种情况不存在;
    ③当时,则,
    ,如图2所示.
    设此时的坐标是,
    在中,由勾股定理得:


    解得:,
    此时的坐标是.
    综上所述:当为等腰三角形时,点的坐标是或.
    本题考查了一次函数图象上点的坐标特征、两点间的距离、勾股定理、对称的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征及对称的性质,找出点,,的坐标;(2)利用全等三角形的判定定理找出当点的坐标是时;(3)分,及三种情况求出点的坐标.
    18、详见解析
    【解析】
    过直线m上点C作直线n⊥m,再在m上截取CB=a,然后以B点为圆心,c为半径画弧交直线n于A,则△ABC满足条件.
    【详解】
    解:如图,△ABC为所作.
    本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.
    【详解】
    解:∵点,关于x轴对称,
    ∴,
    ∴.
    故答案为:.
    此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.
    20、或或1
    【解析】
    如图所示:
    ①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
    ②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
    ③当PA=PE时,底边AE=1;
    综上所述:等腰三角形AEP的对边长为或或1;
    故答案为或或1.
    21、1
    【解析】
    解:∵∴
    ∴或.∵,∴

    故答案为:1.
    22、1
    【解析】
    根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=AB=3,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=BC=3,CE=2BE=6,于是可得菱形AECF的周长.
    【详解】
    解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,
    ∴AD=AO,CO=BC,∠BCE=∠OCE,
    而AD=BC,
    ∴AC=2BC,
    ∴∠CAB=30°,
    ∴BC=AB=3,∠ACB=60°,
    ∴∠BCE=30°,
    ∴BE=BC=3,
    ∴CE=2BE=6,
    ∴菱形AECF的周长=4×6=1.
    故答案为:1
    本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.
    23、1.
    【解析】
    把(1,0)代入y=ax2-bx+5得a-b+5=0,然后利用整体代入的方法计算b-a+2014的值.
    【详解】
    解:把(1,0)代入y=ax2-bx+5得a-b+5=0,
    所以b-a=5,
    所以b-a+2014=5+2014=1.
    故答案为1.
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)(10,6);(2) ), ;(3)见解析.
    【解析】
    (1)根据矩形性质可得到C的坐标;(2)设,由折叠知,,,在中,根据勾股定理得,,,在中,根据勾股定理得,,即,解得,可得;由待定系数法可求直线BE的解析式;(3)存在,理由:由知,,
    ,设,分两种情况分析:当BQ为的对角线时;当BQ为边时.
    【详解】
    解:四边形OBCD是矩形,

    ,,

    故答案为;
    四边形OBCD是矩形,
    ,,,
    设,

    由折叠知,,,
    在中,根据勾股定理得,,

    在中,根据勾股定理得,,



    设直线BE的函数关系式为,



    直线BE的函数关系式为;
    存在,理由:由知,,

    能使以A,B,P,Q为顶点的四边形是平行四边形,

    当BQ为的对角线时,

    点B,P在x轴,
    的纵坐标等于点A的纵坐标6,
    点Q在直线BE:上,



    当BQ为边时,
    与BP互相平分,
    设,



    即:直线BE上是存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形,点或.
    本题考核知识点:一次函数的综合运用. 解题关键点:熟记一次函数性质和特殊平行四边形的性质和判定.
    25、(2)P(,);(2);(3)(,)
    【解析】
    (2把k=2代入l2解析式,当k=2时,直线l2为y=x+2.与l2组成方程组
    , 解这个方程组得:,
    ∴P(,);
    (2)当y=0时,kx+2k=0 ,∵k≠0,∴x=-2,
    ∴C(-2,0),OC=2,当y=0时,-x+3=0,∴x=6,
    ∴A(6,0),OA=6 ,
    过点P作PG⊥DF于点G,
    在△PDG和△ADE中,

    ∴△PDG≌△ADE,
    得DE=DG=DF,
    ∴PD=PF,
    ∴∠PFD=∠PDF
    ∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°
    ∴∠PCA=∠PAC,
    ∴PC=PA
    过点P作PH⊥CA于点H,
    ∴CH=CA=4,
    ∴OH=2,
    当x=2时,y=−×2+3=2代入y=kx+2k,得k=;
    (3)在Rt△PMC和Rt△PQR中,

    ∴Rt△PMC≌Rt△PQR,
    ∴CM=RQ,
    ∴NR=NC,
    设NR=NC=a,则R(−a−2,a),
    代入y=−x+3,
    得− (−a−2)+3=a,解得a=8,
    设P(m,n),则
    解得
    ∴P(,)
    考点:2.一次函数与二元一次方程组综合题;2.三角形全等的运用.
    26、甲、乙两种树苗各购买5000、2000株;甲种树苗至多购买2800株;最少费用为 元.
    【解析】
    列方程求解即可;
    根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;
    用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.
    【详解】
    设购买甲种树苗x株,则购买乙种树苗株,
    由题意得:
    解得,则
    答:甲、乙两种树苗各购买5000、2000株;
    根据题意得:
    解得
    则甲种树苗至多购买2800株
    设购买树苗的费用为W,
    根据题意得:
    随x的增大而减小
    当时,
    本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.
    题号





    总分
    得分
    每人销售量/件
    1800
    510
    250
    210
    150
    120
    人数
    1
    1
    3
    5
    3
    2
    相关试卷

    2025届福建省厦门市第五中学数学九上开学统考模拟试题【含答案】: 这是一份2025届福建省厦门市第五中学数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京大兴北臧村中学数学九上开学学业水平测试模拟试题【含答案】: 这是一份2025届北京大兴北臧村中学数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年西藏达孜中学数学九上开学学业水平测试试题【含答案】: 这是一份2024年西藏达孜中学数学九上开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map