|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年山东省潍坊市寒亭区九年级数学第一学期开学复习检测试题【含答案】
    立即下载
    加入资料篮
    2024年山东省潍坊市寒亭区九年级数学第一学期开学复习检测试题【含答案】01
    2024年山东省潍坊市寒亭区九年级数学第一学期开学复习检测试题【含答案】02
    2024年山东省潍坊市寒亭区九年级数学第一学期开学复习检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省潍坊市寒亭区九年级数学第一学期开学复习检测试题【含答案】

    展开
    这是一份2024年山东省潍坊市寒亭区九年级数学第一学期开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
    A.B.C.D.
    2、(4分)若分式中都扩大到原来的3倍,则分式的值是( )
    A.扩大到原来3倍B.缩小3倍C.是原来的D.不变
    3、(4分)如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有 ( )
    A.1种B.2种C.4种D.无数种
    4、(4分)函数中自变量x的取值范围是( )
    A.x≠﹣1B.x>﹣1C.x≠1D.x≠0
    5、(4分)下列分式中,是最简分式的是( )
    A.B.C.D.
    6、(4分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为( )
    A.B.C.D.
    7、(4分)如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为( )
    A.B.C.D.
    8、(4分)下列各式中,一定是二次根式的有( )个.
    A.2B.3C.4D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是___________.
    10、(4分)在Rt△ABC中,∠C=90°,∠A=30°,BC=6,那么AB=_____.
    11、(4分)如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.
    12、(4分)图1是一个地铁站人口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为______
    13、(4分)已知反比例函数y=(k为常数,k≠2)的图像有一支在第二象限,那么k的取值范围是_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知一次函数y=kx+b的图象经过点A(−1,−1)和点B(1,−3).求:
    (1)求一次函数的表达式;
    (2)求直线AB与坐标轴围成的三角形的面积;
    (3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.
    15、(8分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
    (1)若该城市某户6月份用水18吨,该户6月份水费是多少?
    (2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
    16、(8分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
    (1)求∠ABD的度数;
    (2)求线段BE的长.
    17、(10分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.
    (1)求AG的长;
    (2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;
    (3)求线段GH所在直线的解析式.
    18、(10分)先化简,再求值:(1﹣)÷.其中a从0,1,2,﹣1中选取.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若a,b是直角三角形的两个直角边,且,则斜边c=______.
    20、(4分)某校对1200名学生的身高进行了测量,身高在1.58~1.63(单位:)这一个小组的频率为0.25,则该组的人数是________.
    21、(4分)在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:
    老师说:“小楠、小曼的作法都正确”
    请回答:小楠的作图依据是______;
    小曼的作图依据是______.
    22、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______
    23、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.
    (1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);
    (2)在(1)的条件下,求证:△ABE≌△CDF.
    25、(10分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.
    (1)请你猜想与之间的数量与位置关系,并加以证明;
    (2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;
    (3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.
    26、(12分)如图1,一次函数的图象与反比例函数的图象交于)两点与x轴,y轴分别交于A、B(0,2)两点,如果的面积为6.
    (1)求点A的坐标;
    (2)求一次函数和反比例函数的解析式;
    (3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和的面积
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据菱形的判定方法一一判定即可
    【详解】
    作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
    B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
    C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
    D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
    故选A
    本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
    2、A
    【解析】
    把分式中的分子,分母中的 都同时变成原来的3倍,就是用 3a, 3b分别代替式子中的a , b,看得到的式子与原式子的关系.
    【详解】
    将分式中都扩大到原来的3倍,得到=,则是的3倍.故答案为A.
    本题考查分式的性质,解题的关键是掌握分式的性质.
    3、D
    【解析】
    分析:根据正方形的性质,即可解答.
    详解:利用正方形的对称性,只要将十字架交点放在正方形的中心,转动任意角度,都能将正方形分成面积相等的四部分.
    故选:D.
    点睛:本题主要考查了正方形的性质,解题关键在于理解正方形的性质.
    4、A
    【解析】
    根据有分式的意义的条件,分母不等于0,可以求出x的范围.
    【详解】
    解:根据题意得:x+1≠0,
    解得:x≠﹣1.
    故选:A.
    本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    5、C
    【解析】
    根据最简分式的定义对四个分式分别进行判断即可.
    【详解】
    A、=,不是最简分式;
    B、=,不是最简分式;
    C、,是最简分式;
    D、=,不是最简分式;
    故选C.
    本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.
    6、B
    【解析】
    先根据勾股定理求出AB的长,由于AB=AC,可求出AC的长,再根据点C在x轴的负半轴上即可得出结论.
    【详解】
    解:∵点A的坐标为(4,0),点的坐标为(0,3),
    ∴OA=4,OB=3,
    ∴AB==5,
    ∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,
    ∴AC=5,
    ∴OC=1,
    ∴点C的坐标为(-1,0).
    故选B.
    本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC的长是解答此题的关键.
    7、D
    【解析】
    连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH= ,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.
    【详解】
    解:如图,连接AF交BE于点O,过点F作MN⊥AB,
    ∵AB∥CD,MN⊥AB,
    ∴MN⊥CD,
    ∵AB=2=AD,点E是AD中点,
    ∴AE=1,
    ∴EB=,
    ∵S△ABE=×AB×AE=×BE×AO,
    ∴2×1=AO,
    ∴AO=,
    ∵将△ABE沿BE折叠,点A的对应点为F,
    ∴AO=OH=,AB=BF=2,
    ∴AF=,
    ∵AF2-AN2=FN2,BF2-BN2=FN2,
    ∴AF2-AN2=BF2-BN2,
    ∴-(2-BN)2=4-BN2,
    ∴BN=,
    ∴FN=,
    ∵MN⊥AB,MN⊥CD,∠DCB=90°,
    ∴四边形MNBC是矩形,
    ∴BN=MC=,BC=MN=2,
    ∴MF=,
    ∴CF=.
    故选:D.
    本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.
    8、B
    【解析】
    试题解析:根据二次根式定义:一般地,我们把形如(a≥0)的式子叫做二次根式知:,,,是二次根式,共3个.
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4或5
    【解析】
    【分析】分两种情况分析:8可能是直角边也可能是斜边;根据直角三角形斜边上的中线等于斜边的一半.
    【详解】当一个直角三角形的两直角边分别是6,8时,
    由勾股定理得,斜边==10,则斜边上的中线=×10=5,
    当8是斜边时,斜边上的中线是4,
    故答案为:4或5
    【点睛】本题考核知识点:直角三角形斜边上的中线.解题关键点:分两种情况分析出斜边.
    10、1
    【解析】
    根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.
    【详解】
    ∵在Rt△ABC中,∠C=90°,∠A=30°,
    ∴=,
    ∵BC=6,
    ∴AB=1.
    故答案为1.
    本题主要考查含30度角的直角三角形的知识点,此题较简单,需要同学们熟记直角三角形的性质:30°所对的直角边等于斜边的一半.
    11、x > 1;
    【解析】
    观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.
    【详解】
    ∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,
    ∴不等式ax>kx+b的解集为x>1,
    故答案为x>1.
    本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.
    12、
    【解析】
    过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,根据含30度角的直角三角形的性质即可求出AE与BF的长度,然后求出EF的长度即可得出答案.
    【详解】
    解:过点A作AE⊥PC于点E,过点B作BF⊥QD于点F,
    ∵AC=56,∠PCA=30°,

    由对称性可知:BF=AE,
    ∴通过闸机的物体最大宽度为2AE+AB=56+10=66;
    故答案为:66cm.
    本题考查解直角三角形,解题的关键是熟练运用含30度的直角直角三角形的性质,本题属于基础题型.
    13、k<2.
    【解析】
    由于反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,故k-2<0,求出k的取值范围即可.
    【详解】
    ∵反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,
    ∴k-2<0,
    解得k<2,
    故答案为k<2.
    此题考查反比例函数的性质,解题关键在于掌握利用其经过的象限进行解答.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=-x-2;(2)2;(3)P(-)
    【解析】
    【分析】(1)把A、B两点代入可求得k、b的值,可得到一次函数的表达式;
    (2)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;
    (3)根据轴对称的性质,找到点A关于x的对称点A′,连接BA′,则BA′与x轴的交点即为点P的位置,求出直线BA′的解析式,可得出点P的坐标.
    【详解】(1)把A(-1,-1)B(1,-3)分别代入y=kx+b,得:
    ,解得:,
    ∴一次函数表达式为:y=-x-2;
    (2)设直线与x轴交于C,与y轴交于D,y=0代入y=-x-2得x=-2,∴OC=2,
    x=0代入y=-x-2 得:y=-2,∴OD=2,
    ∴S △COD =×OC×OD=×2×2=2;
    (3)点A关于x的对称点A′,连接BA′交x轴于P,则P即为所求,
    由对称知:A′(-1,1),设直线A′B解析式为y=ax+c,
    则有,解得:,
    ∴y=-2x-1,
    令y=0得, -2x-1=0, 得x=- ,∴P(-).
    【点睛】本题考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,轴对称-最短路线问题,熟练掌握待定系数法的应用是解题的关键.
    15、(1)该户6月份水费是45元;(2)y=3.3x-1.
    【解析】
    (1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;
    (2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.
    【详解】
    解:(1)根据题意:该户用水18吨,按每吨2.5元收费,
    2.5×18=45(元),
    答:该户6月份水费是45元;
    (2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,
    则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,
    应缴水费y=2.5×20+3.3×(x-20),
    整理后得:y=3.3x-1,
    答:y关于x的函数关系式为y=3.3x-1.
    本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.
    16、(1)∠ABD=60°;(3)BE=1.
    【解析】
    (1)在菱形ABCD中,AB=AD,∠A=60°,
    ∴△ABD为等边三角形.
    ∴∠ABD=60°.
    (3)由(1)可知BD=AB=3.
    又∵O为BD的中点,
    ∴OB=3.
    ∵OE⊥AB,∠ABD=60°,
    ∴∠BOE=30°.
    ∴.
    17、(1)AG=1.5;AM+CM最小值为;(3)
    【解析】
    试题分析:(1)根据折叠的性质可得AG=GH,设AG的长度为x,在Rt△HGB中,利用勾股定理求出x的值;
    (2)作点A关于直线y=-1的对称点A',连接CA'与y=-1交于一点,这个就是所求的点,求出此时AM+CM的值;
    (3)求出G、H的坐标,然后设出解析式,代入求解即可得出解析式.
    试题解析:(1)由折叠的性质可得,AG=GH,AD=DH,GH⊥BD,
    ∵AB=4,BC=3,
    ∴BD=,
    设AG的长度为x,
    ∴BG=4-x,HB=5-3=2,
    在Rt△BHG中,GH2+HB2=BG2,
    x2+4=(4-x)2,
    解得:x=1.5,
    即AG的长度为1.5;
    (2)如图所示:作点A关于直线y=-1的对称点A',连接CA'与y=-1交于M点,
    ∵点B(5,1),
    ∴A(1,1),C(5,4),A'(1,-3),
    AM+CM=A'C=,
    即AM+CM的最小值为;
    (3)∵点A(1,1),
    ∴G(2.5,1),
    过点H作HE⊥AD于点E,HF⊥AB于点F,如图所示,
    ∴△AEH∽△DAB,△HFB∽△DAB,
    ∴,,
    即,,
    解得:EH=,HF=,
    则点H(,),
    设GH所在直线的解析式为y=kx+b,
    则,解得:,
    则解析式为:.
    【点睛】本题考查了一次函数的综合应用,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质以及利用待定系数法求函数解析式等知识,知识点较多,难度较大,解答本题的关键是掌握数形结合的思想.
    18、,
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=﹣1代入计算即可求出值.
    【详解】
    原式,
    当a=﹣1时,原式=.
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、5
    【解析】
    根据绝对值的性质和二次根式的性质,求出a,b的值,再利用勾股定理即可解答.
    【详解】

    ∴a-3=0,b-4=0
    解得a=3,b=4,
    ∵a,b是直角三角形的两个直角边,
    ∴c= =5.
    故答案为:5.
    此题考查绝对值的性质和二次根式的性质,勾股定理,解题关键在于求出ab的值.
    20、1.
    【解析】
    试题解析:该组的人数是:1222×2.25=1(人).
    考点:频数与频率.
    21、同位角相等,两直线平行或垂直于同一直线的两条直线平行 内错角相等,两直线平行
    【解析】
    由平行线的判定方法即可得到小楠、小曼的作图依据.
    【详解】
    解:∵∠B=∠D=90°,
    ∴AB//CD(同位角相等,两直线平行);
    ∵∠ABC=∠DCB=90°,
    ∴AB//CD(内错角相等,两直线平行),
    故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.
    本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    22、1
    【解析】
    利用向量的三角形法则直接求得答案.
    【详解】
    如图:
    ∵-==且||=1,
    ∴||=1.
    故答案为:1.
    此题考查了平面向量,属于基础题,熟记三角形法则即可解答.
    23、①②④.
    【解析】
    ①易证△ABD∽△ADF,结论正确;
    ②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;
    ③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;
    ④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.
    【详解】
    解:如图,在线段DE上取点F,使AF=AE,连接AF,
    则∠AFE=∠AEF,
    ∵AB=AC,
    ∴∠B=∠C,
    ∵∠ADE=∠B=a,
    ∴∠C=∠ADE=a,
    ∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,
    ∴∠DAF=∠CDE,
    ∵∠ADE+∠CDE=∠B+∠BAD,
    ∴∠CDE=∠BAD,
    ∴∠DAF=∠BAD,
    ∴△ABD∽△ADF
    ∴,即AD2=AB•AF
    ∴AD2=AB•AE,
    故①正确;
    由①可知:,
    当AD⊥BC时,由勾股定理可得:

    ∴,
    ∴,即,故②正确;
    如图2,作AH⊥BC于H,
    ∵AB=AC=5,
    ∴BH=CH=BC=4,
    ∴,
    ∵AD=AD′=,
    ∴DH=D′H=,
    ∴BD=3或BD′=5,CD=5或CD′=3,
    ∵∠B=∠C
    ∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形
    故③不正确;
    如图3,AD⊥BC,DE⊥AC,
    ∴∠ADE+∠DAE=∠C+∠DAE=90°,
    ∴∠ADE=∠C=∠B,
    ∴BD=4;
    如图4,DE⊥BC于D,AH⊥BC于H,
    ∵∠ADE=∠C,
    ∴∠ADH=∠CAH,
    ∴△ADH∽△CAH,
    ∴,即,
    ∴DH=,
    ∴BD=BH+DH=4+==6.1,
    故④正确;
    综上所述,正确的结论为:①②④;
    故答案为:①②④.
    本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    (1)以点C为圆心,任意长为半径画弧,交CD,BC于两点,分别以这两点为圆心,大于这两点距离的一半为半径画弧,在平行四边形内交于一点,过点C以及这个交点作射线,交AD于点F即可;
    (2)根据ASA即可证明:△ABE≌△CDF.
    【详解】
    (1)如图所示:CF即为所求作的;
    (2)∵四边形ABCD是平行四边形,
    ∴AB=CD,∠B=∠D,∠BAD=∠BCD,
    ∵AE平分∠BAD,CF平分∠BCD,
    ∴∠BAE=∠DCF,
    在△ABE和△CDF中

    ∴△ABE≌△CDF.
    本题考查了平行四边形的性质、全等三角形的判定、尺规作图—作角平分线,熟练掌握尺规作图的方法以及全等三角形的判定方法是解题的关键.
    25、(1),,其理由见解析;(2);(3)6
    【解析】
    (1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;
    (2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,连接交于,则=°=,在Rt△AMD中,求出AO的长,即为DO的长,根据勾股定理求出GO的长,进而确定出DG的长,即为BE的长;
    (3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.
    【详解】
    (1)
    证明:,,其理由是:
    在正方形和正方形中,
    有,,,
    ∴≌,∴,,
    ∵,∴
    延长交于,则,
    ∴.
    (2)
    解:在正方形和正方形中,
    有,,,

    ∴≌,∴
    连接交于,则,
    ∴,,


    (3)
    与面积之和的最大值为6,其理由是:
    对于,长一定,当到的长度最大时,的面积最大,由(1)(2))△GHE和△BHD面积之和的最大值为6,理由为:
    对于△EGH,点H在以EG为直径的圆上,
    ∴当点H与点A重合时,△EGH的高最大;
    对于△BDH,点H在以BD为直径的圆上,
    ∴当点H与点A重合时,△BDH的高最大,
    则△GHE和△BHD面积之和的最大值为2+4=6.
    本题为几何变换综合题,(1)一般要问两条线段的关系,得分两个方面讨论,一个是长度关系,一个是位置关系(不是平行就是垂直),一般证明长度相等只需要证明三角形全等即可;(2)(1)中已经证明的结论一般为(2)作铺垫,所以只需要求出BE即可求出DG,这里因为出现直角三角形,所求线段的长度,用到了勾股定理;(3)这里主要用到直径所对的圆周角等于90°即可得到H同时在以BD和GH为直径的弦上,此时H在A处时,高最大,为圆的半径.
    26、(1)A(﹣4,0);(2),;(3),8
    【解析】
    (1)由三角形面积求出OA=4,即可求得A(-4,0).
    (2)利用待定系数法即可求出一次函数的解析式,进而求得C点的坐标,把C点的坐标代入,求出m的值,得到反比例函数的解析式;
    (3)先联立两函数解析式得出D点坐标,根据中心对称求得E点的坐标,然后根据三角形的面积公式计算△CED的面积即可.
    【详解】
    (1)如图1,
    ∵,
    ∴,
    ∴,
    ∵的面积为6,
    ∴,
    ∵,
    ∴OA=4,
    ∴A(﹣4,0);
    (2)如图1,把代入得,
    解得,
    ∴一次函数的解析式为,
    把代入得,,
    ∴,
    ∵点C在反比例函数的图象上,
    ∴m=2×3=6,
    ∴反比例函数的解析式为;
    (3)如图2,作轴于F,轴于H,
    解,得,,
    ∴,
    ∴,
    ∴=
    此题考查一次函数与反比例函数的交点问题,待定系数法求函数解析式,函数图象上点的坐标特征,三角形面积的计算,注意数形结合的思想运用.
    题号





    总分
    得分
    相关试卷

    2024年山东省潍坊市寒亭区九年级数学第一学期开学考试模拟试题【含答案】: 这是一份2024年山东省潍坊市寒亭区九年级数学第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省潍坊市寒亭区2023-2024学年九年级数学第一学期期末检测模拟试题含答案: 这是一份山东省潍坊市寒亭区2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共7页。试卷主要包含了如图所示的两个三角形等内容,欢迎下载使用。

    2023-2024学年山东省潍坊市寒亭区九上数学期末考试试题含答案: 这是一份2023-2024学年山东省潍坊市寒亭区九上数学期末考试试题含答案,共7页。试卷主要包含了答题时请按要求用笔,二次函数等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map