2024年江苏省苏州市工业园区斜塘学校九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,添加一个条件,仍无法判断四边形BFDE为菱形的是( )
A.∠A=60˚B.DE=DFC.EF⊥BDD.BD 是∠EDF的平分线
2、(4分)如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12B.9C.6D.4
3、(4分)下列成语描述的事件为随机事件的是( )
A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
4、(4分)如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )
A.(-8,0)B.(0,8)
C.(0,8)D.(0,16)
5、(4分)函数中,自变量x的取值范围是
A.x>﹣1B.x<﹣1C.x≠﹣1D.x≠0
6、(4分)关于x的一元二次方程有两个实数根,则实数m的取值范围是( )
A.m≥0B.m>0C.m≥0且m≠1D.m>0且m≠1
7、(4分)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )
A.B.C.D.
8、(4分)如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为( )
A.24B.10C.4.8D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.
10、(4分)如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.若∠MBD=40°,则∠NCD的度数为_____.
11、(4分)如图,在平面直角坐标系xOy中,已知正比例函数y= -2x和反比例函数的图象交于A(a,-4),B两点。过原点O的另一条直线l与双曲线交于点P,Q两点(P点在第二象限),若以点A,B,P,Q为顶点的四边形面积为24,则点P的坐标是_______
12、(4分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.
13、(4分)如图,在正方形的内侧,作等边,则的度数是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米. (,结果精确到).
15、(8分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.
16、(8分)把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,
求:(1)DF的长;(2)重叠部分△DEF的面积.
17、(10分)已知一次函数y=kx-4,当x=2时,y=-3.
(1)求一次函数的表达式;
(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.
18、(10分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.
(1)求的值.
(2)若的面积为.
①求点的坐标.
②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出
符合条件的所有点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简: 的结果是_____.
20、(4分)已知是分式方程的根,那么实数的值是__________.
21、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.
22、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
23、(4分)为了解一批节能灯的使用寿命,宜采用__________的方式进行调查.(填“普查”或“抽样调查”)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图 1,在正方形 ABCD 中, P 是对角线 AC 上的一点,点 E 在 BC 的延长线上,且PE PB .
(1)求证: △BCP≌△DCP ;
(1)求证: DPE ABC ;
(3)把正方形 ABCD 改为菱形 ABCD ,且 ABC 60 ,其他条件不变,如图 1.连接 DE , 试探究线段 BP 与线段 DE 的数量关系,并说明理由.
25、(10分)下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告,让交警知道这个时段路口来往车辆的车速情况.
26、(12分)先化简,再求值:当m=10时,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先证明四边形BFDE是平行四边形,再根据菱形的判定定理逐项进行分析判断即可.
【详解】
由题意知:四边形ABCD是平行四边形,
∴∠ADC=∠ABC,∠A=∠C,AD=BC,AB=CD,ABCD
又∵DE,BF分别是∠ADC和∠ABC的平分线,
∴∠ADE=∠FBC,
在△ADE和△CBF中
∴△ADE≌△CBF(ASA)
∴AE=CF,DE=BF
又∵AB=CD,ABCD ,AE=CF
∴DF=BE,DFBE、
∴四边形BFDE是平行四边形.
A、∵AB//CD,
∴∠AED=∠EDC,
又∵∠ADE=∠EDC,
∴∠ADE=∠AED,
∴AD=AE,
又∵∠A=60°,
∴△ADE是等边三角形,
∴AD=AE=DE,
无法判断平行四边形BFDE是菱形.
B、∵DE=DF,
∴平行四边形BFDE是菱形.
C、∵EF⊥BD,
∴平行四边形BFDE是菱形.
D、∵BD 是∠EDF的平分线,
∴∠EDB=∠FDB,
又∵DF//BE,
∴∠FDB=∠EBD,
∴∠EDB=∠EBD,
∴ED=DB,
∴平行四边形BFDE是菱形.
故选A.
本题考查了平行四边形的性质,菱形的判定,正确掌握菱形的判定定理是解题的关键.
2、B
【解析】
∵点,是中点
∴点坐标
∵在双曲线上,代入可得
∴
∵点在直角边上,而直线边与轴垂直
∴点的横坐标为-6
又∵点在双曲线
∴点坐标为
∴
从而,故选B
3、B
【解析】试题解析:水涨船高是必然事件,A不正确;
守株待兔是随机事件,B正确;
水中捞月是不可能事件,C不正确
缘木求鱼是不可能事件,D不正确;
故选B.
考点:随机事件.
4、D
【解析】
根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,可求出从A到A3变化后的坐标,再求出A1、A2、A3、A4、A5,继而得出A8坐标即可.
【详解】
解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘,
∵从A到经过了3次变化,
∵45°×3=135°,1×=2,
∴点所在的正方形的边长为2,点位置在第四象限,
∴点的坐标是(2,-2),
可得出:点坐标为(1,1),
点坐标为(0,2),点坐标为(2,-2),
点坐标为(0,-4),点坐标为(-4,-4),
(-8,0),A7(-8,8),(0,16),
故选D.
本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.
5、C
【解析】
试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.
6、C
【解析】
解:∵关于x的一元二次方程有两个实数根,
∴,解得:m≥0且m≠1.故选C.
7、B
【解析】
按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.
【详解】
解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.
本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.
8、C
【解析】
运用勾股定理可求DB的长,再用面积法可求DH的长.
【详解】
解:∵四边形ABCD是菱形,AC=8,
∴AC⊥DB,OA=4,
∵AD=5,
∴运用勾股定理可求OD=3,
∴BD=1.
∵×1×8=5DH,
∴DH=4.8.
故选C.
本题运用了菱形的性质和勾股定理的知识点,运用了面积法是解决本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题解析:∵Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,
∴CE=CA=2,∠ECF=∠ACB=90°,
∴点E、C、B共线,
∴BE=EC+BC=2+1=1.
10、40°
【解析】
先根据作法证明△ABD≌△ACD,由全等三角形的性质可得∠BAD=∠CAD,∠BDA=∠CDA,然后根据三角形外角的性质可证∠NCD=∠MBD=40°.
【详解】
在△ABD和△ACD中,
∵AB=AC,
BD=CD,
AD=AD,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,∠BDA=∠CDA.
∵∠MBD=∠BAD+∠BDA,∠NCD=∠CAD+∠CDA,
∴∠NCD=∠MBD=40°.
故答案为:40°.
本题考查了尺规作图,全等三角形的判定与性质,三角形外角的性质,熟练掌握三角形全等的判定与性质是解答本题的关键.
11、P(﹣4,2)或P(﹣1,8).
【解析】
根据题意先求出点A(2,﹣4),利用原点对称求出B(﹣2,4),再把A代入代入反比例函数得出解析式,利用原点对称得出四边形AQBP是平行四边形,S△POB=S平行四边形AQBP×=×24=1,设点P的横坐标为m(m<0且m≠﹣2),得到P的坐标,根据双曲线的性质得到S△POM=S△BON=4,接着再分情况讨论:若m<﹣2时,可得P的坐标为(﹣4,2);若﹣2<m<0时,可得P的坐标为(﹣1,8).
【详解】
解:∵点A在正比例函数y=﹣2x上,
∴把y=﹣4代入正比例函数y=﹣2x,
解得x=2,∴点A(2,﹣4),
∵点A与B关于原点对称,
∴B点坐标为(﹣2,4),
把点A(2,﹣4)代入反比例函数 ,得k=﹣8,
∴反比例函数为y=﹣,
∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形AQBP是平行四边形,
∴S△POB=S平行四边形AQBP×=×24=1,
设点P的横坐标为m(m<0且m≠﹣2),
得P(m,﹣),
过点P、B分别做x轴的垂线,垂足为M、N,
∵点P、B在双曲线上,
∴S△POM=S△BON=4,
若m<﹣2,如图1,
∵S△POM+S梯形PMNB=S△POB+S△POM,
∴S梯形PMNB=S△POB=1.
∴(4﹣)•(﹣2﹣m)=1.
∴m1=﹣4,m2=1(舍去),
∴P(﹣4,2);
若﹣2<m<0,如图2,
∵S△POM+S梯形BNMP=S△BOP+S△BON,
∴S梯形BNMP=S△POB=1.
∴(4﹣)•(m+2)=1,
解得m1=﹣1,m2=4(舍去),
∴P(﹣1,8).
∴点P的坐标是P(﹣4,2)或P(﹣1,8),
故答案为P(﹣4,2)或P(﹣1,8).
此题考查一次函数和反比例函数的综合,解题关键在于做出辅助线,运用分类讨论的思想解决问题.
12、1
【解析】
求出x1,x2即可解答.
【详解】
解:∵x2﹣x=0,
∴x(x﹣1)=0,
∵x1<x2,
∴解得:x1=0,x2=1,
则x2﹣x1=1﹣0=1.
故答案为:1.
本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.
13、
【解析】
由正方形和等边三角形的性质得出∠ABE=30°,AB=BE,由等腰三角形的性质和三角形内角和定理即可求出∠AEB的度数.
【详解】
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∵△EBC是等边三角形,
∴BE=BC,∠EBC=60°,
∴∠ABE=90°−60°=30°,AB=BE,
∴∠AEB=∠BAE=(180°−30°)=1°;
故答案为:1.
本题考查了正方形的性质、等边三角形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度之比等于下部与全部的高度比,列出方程求解即可.
【详解】
解:设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.
依题意,得
解得(不合题意,舍去).
经检验,是原方程的根.
雕像下部设计的高度应该为:1.236m
故答案为:1.236m
本题考查了黄金分割的应用,利用黄金分割中成比例的对应线段是解决问题的关键.
15、证明见解析
【解析】
由题意先证明△ADE≌△BAF,得出∠EDA=∠FAB,再根据∠ADE+∠AED=90°,推得∠FAE+∠AED=90°,从而证出AF⊥DE.
【详解】
解:∵四边形ABCD为正方形,
∴DA=AB,∠DAE=∠ABF=90°,
又∵AE=BF,
∴△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠FAE+∠AED=90°,
∴∠AGE=90°,
∴AF⊥DE.
本题考查正方形的性质;全等三角形的判定与性质.
16、(1) DF的长为3.4cm;(2)△DEF的面积为:S=5.1.
【解析】
(1)设DF=xcm,由折叠可知FB=DF=x,所以,CF=5-x,CD=AB=3,在Rt△DCF中根据勾股定理列式求解即可;
(2)根据折叠的性质得到∠EFB=∠EFD,根据平行线的性质得到DEF=∠EFB,等量代换得到∠DEF=∠DFE,于是DE=DF=3.4,然后根据三角形的面积公式计算即可;
【详解】
解:(1)设DF=xcm,
由折叠可知,FB=DF=x,所以,CF=5-x,CD=AB=3,
在Rt△DCF中,32+(5-x)2=x2,
解得:x=3.4cm
所以,DF的长为3.4cm
(2)由折叠可知∠EFB=∠EFD,
又AD∥BC,
所以,∠DEF=∠EFB,
所以,∠DEF=∠DFE,
所以,DE=DF=3.4,
△DEF的面积为:S==5.1
此题主要考查了折叠问题,矩形的性质,勾股定理,得出AE=A′E,根据勾股定理列出关于x的方程是解决问题的关键.
17、(1)y=x-4.(2)(-4,0).
【解析】
(1)把点(2,-3)代入解析式即可求出k;
(2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.
【详解】
解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=.
∴一次函数的表达式为y=x-4.
(2)将y=x-4的图像向上平移6个单位长度得y=x+2.
当y=0时,x=-4.
∴平移后的图像与x轴交点的坐标为(-4,0).
此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.
18、(1)4;(2)①点的坐标为.②、、
【解析】
(1)利用待定系数法将A点代入,即可求函数解析式的k值;
(2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;
(3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.
【详解】
(1)函数的图象经过点,
(2)①如图,设AC与BD交与M,
点的横坐标为,点在的图象上,
点的坐标为.
∵轴,轴,
,.
∵的面积为,
.
.
.
点的坐标为.
②∵C(1,0)
∴AC=4
当以ACZ作为平行四边形的边时,BE=AC=4
∴
∴
∴、
当AC作为平行四边形的对角线时,AC中点为
∴BE中点为(1,2)设E(x,y)
∵点的坐标为
则
解得:
∴
综上所述:在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,符合条件的所有点的坐标为:、、
故答案为、、
本题考察了利用待定系数法求反比例函数,以及利用三角形面积列方程求点的坐标和平行四边形的平移规律求点的坐标,解题的关键是会利用待定系数法求解析式,会用平移来求点的坐标.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
原式= ,故答案为.
20、1
【解析】
将代入到方程中即可求出m的值.
【详解】
解:将代入,得
解得:
故答案为:1.
此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键.
21、504m2
【解析】
由OA =2n知OA = +1=1009,据此得出A A =1009-1=1008,据此利用三角形的面积公式计算可得.
【详解】
由题意知OA =2n,
∵2018÷4=504…2,
∴OA = +1=1009,
∴A A =1009-1=1008,
则△O A A的面积是×1×1008=504m2
此题考查规律型:数字变换,解题关键在于找到规律
22、1
【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.
【详解】
解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.
本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.
23、抽样调查
【解析】
了解一批节能灯的使用寿命,对灯泡进行调查具有破坏性,故不宜采用普查,应采用抽样调查.
【详解】
了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验。所以填抽样调查。
本题考查了抽样调查的定义,掌握抽样调查和普查的定义是解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(1)见解析;(3)BP=DE,理由见解析.
【解析】
(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可;
(1)根据(1)的结论可得∠CBP=∠CDP,根据PE PB可得∠CBP=∠E,于是∠CDP=∠E,再由∠1=∠1可进一步推得∠DPE=∠DCE,最后由AB∥CD,可得∠DCE=∠ABC,从而结论得证;
(3)BP =DE. 由(1)的结论可得PD=PB=PE,由(1)的结论可知∠DPE=∠ABC=60°,进一步可推得△PDE是等边三角形,则DE=PE=PB,即得结论.
【详解】
(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
在△BCP和△DCP中,
∵ ,
∴△BCP≌△DCP(SAS);
(1)证明:如图,由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠CDP=∠E,
∵∠1=∠1,
∴180°﹣∠1﹣∠CDP=180°﹣∠1﹣∠E,
即∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC;
(3)BP=DE,理由如下:
由(1)知,△BCP≌△DCP,所以PD=PB=PE,
由(1)知,∠DPE=∠ABC=60°,
∴△PDE是等边三角形,
∴DE=PE=PB,
∴DE=PB.
本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等腰三角形的性质和等边三角形的判定与性质,其中第(1)小题中的“蝴蝶型”三角形是证明两个角相等常用的模型,是解题的关键;而第(3)小题则充分利用了(1)(1)两个小题的结论,体现了整道题在方法和结论上的连续性.
25、见解析
【解析】
根据图形中的信息可得出最高速度与最低速度,其中速度最多的车辆有多少等等,最后组织语言交代清楚即可.
【详解】
由图可得:此处车辆速度平均在51千米/小时以上,大多以53千米/小时或54千米/小时速度行驶,最高速度为53千米/小时,有超过一半的速度在52千米/小时以上,行驶速度众数为53.
本题主要考查了统计图的认识,熟练掌握相关概念是解题关键.
26、.
【解析】
首先将原式的分子与分母分解因式,进而化简求出答案.
【详解】
=
=
=
= ,
当m=10时,原式==.
此题考查分式的化简求值,解题关键在于掌握运算法则
题号
一
二
三
四
五
总分
得分
批阅人
2023-2024学年苏州市工业园区斜塘学校数学九上期末复习检测模拟试题含答案: 这是一份2023-2024学年苏州市工业园区斜塘学校数学九上期末复习检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,等于等内容,欢迎下载使用。
2023-2024学年苏州市工业园区斜塘学校数学九年级第一学期期末调研试题含答案: 这是一份2023-2024学年苏州市工业园区斜塘学校数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,的值为,如果点与点关于原点对称,则等内容,欢迎下载使用。
2023-2024学年江苏省苏州市工业园区斜塘学校数学九年级第一学期期末统考模拟试题含答案: 这是一份2023-2024学年江苏省苏州市工业园区斜塘学校数学九年级第一学期期末统考模拟试题含答案,共7页。试卷主要包含了如图,中,,,点是的外心,二次函数与坐标轴的交点个数是等内容,欢迎下载使用。