2024年湖南长沙长郡梅溪湖中学九上数学开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于数据:80,88,85,85,83,83,1.下列说法中错误的有( )
①这组数据的平均数是 1;②这组数据的众数是 85;③这组数据的中位数是 1;④这组数据的方差是 2.
A.1 个B.2 个C.3 个D.4 个
2、(4分)如图,函数和的图像交于点,则根据图像可得不等式的解集是( )
A.B.C.D.
3、(4分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为( )
A.(2,0)B.(,0)C.(,0)D.(,0)
4、(4分)已知:|a|=3,=5,且|a+b|=a+b,则a﹣b的值为( )
A.2或8 B.2或﹣8 C.﹣2或8 D.﹣2或﹣8
5、(4分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( )
A.52和54 B.52
C.53 D.54
6、(4分)方程x(x-2)=0的根是( )
A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=-2
7、(4分)已知△ABC的三个角是∠A,∠B,∠C ,它们所对的边分别是a,b,c.①c2-a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2 ,c=.上述四个条件中,能判定△ABC 为直角三角形的有( )
A.1个B.2个
C.3个D.4个
8、(4分)不等式:的解集是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=与y=k2x(k1,k2均是不为0的常数)的图象相交于A、B两点,若点A的坐标是(1,2),则点B的坐标是______.
10、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.
11、(4分)2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.
12、(4分)在关系式V=31-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=1.
13、(4分)一次函数的图像经过点,且的值随值的増大而增大,请你写出一个符合所有条件的点的坐标__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)若关于x的分式方程=﹣2的解是非负数,求a的取值范围.
15、(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
16、(8分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:
方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;
(总费用=广告赞助费+门票费)
方案二:购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为 ;
方案二中,当0≤x≤100时,y与x的函数关系式为 ,当x>100时,y与x的函数关系式为 ;
(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.
17、(10分)如图,一次函数y=kx+b的图象分别与x轴,y轴的正半轴分別交于点A,B,AB=2,∠OAB=45°
(1)求一次函数的解析式;
(2)如果在第二象限内有一点C(a,);试用含有a的代数式表示四边形ABCO的面积,并求出当△ABC的面积与△ABO的面积相等时a的值;
(3)在x轴上,是否存在点P,使△PAB为等腰三角形?若存在,请直接写出所有符合条件的点P坐标;若不存在,请说明理由.
18、(10分)如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD、又作平行四边形CFHD、CGKE.
求证:H,C,K三点共线.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若不等式的正整数解是,则的取值范围是____.
20、(4分)如图,在己知的中,按以一下步骤作图:①分别以为圆心,大于的长为半径作弧,相交于两点;②作直线交于点,连接.若,,则的度数为___________.
21、(4分)12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是_____.
22、(4分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
23、(4分)已知a+ = ,则a-=__________
二、解答题(本大题共3个小题,共30分)
24、(8分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表
(1)在图①中,“80分”所在扇形的圆心角度数为;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
25、(10分)4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.
(1)求甲、乙两种图书的单价各是多少元?
(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?
26、(12分)感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.
探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF
应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由平均数公式可得这组数据的平均数为1;
在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、1、85、85、88,可得其中位数是1;
其方差为,
故选B.
2、C
【解析】
根据一次函数的图象和两函数的交点坐标即可得出答案
【详解】
解:从图象得到,当x>-2时,的图象在函数y=ax-3的图象上
∴不等式3x+b>ax-3的解集是x>-2,
故选:C
此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象
3、C
【解析】
首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示-1,可得M点表示的数.
解:AC=,
则AM=,
∵A点表示-1,
∴M点表示的数为:-1,
故选C.
“点睛”此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
4、D
【解析】
试题分析:利用绝对值的代数意义,以及二次根式性质求出a与b的值,即可求出a﹣b的值.
解:根据题意得:a=3或﹣3,b=5或﹣5,
∵|a+b|=a+b,
∴a=3,b=5;a=﹣3,b=5,
则a﹣b=﹣2或﹣1.
故选D.
5、A
【解析】
试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。
考点:众数的计算
6、C
【解析】
试题分析:∵x(x-1)= 0
∴x=0或x-1=0,
解得:x1=0,x1=1.
故选C.
考点: 解一元二次方程-因式分解法.
7、C
【解析】
根据勾股定理逆定理、三角形的内角和逐一进行判断即可得.
【详解】
①由c2-a2=b2,可得c2=a2+b2,故可判断三角形ABC是直角三角形;
②∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,
∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,
∴△ABC是直角三角形;
③∵c=a=b,∴a=b,
∴a2+b2=2a2=c2,∴△ABC是直角三角形;
④∵a=2,b=2 ,c=,
∴a2+b2=12≠c2,
∴△ABC不是直角三角形,
故选C.
本题考查了直角三角形的判定,主要涉及勾股定理的逆定理、三角形的内角和等,熟练掌握勾股定理的逆定理是解题的关键.
8、C
【解析】
利用不等式的基本性质:先移项,再系数化1,即可解得不等式;注意系数化1时不等号的方向改变.
【详解】
1-x>0,
解得x<1,
故选C.
本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (-1,-2)
【解析】
根据函数图象的中心对称性,由一个交点坐标,得出另一个交点坐标,“关于原点对称的两个的纵横坐标都是互为相反数”这一结论得出答案.
【详解】
∵正比例函数y=k2x与反比例函数数y=的图象都是以原点为对称中心的中心对称图形,
∴他们的交点A与点B也关于原点对称,
∵A(1,2)
∴B(-1,-2)
故答案为:(-1,-2)
考查正比例函数、反比例函数的图象和性质,得出点A和点B关于原点对称是解决问题的关键,掌握“关于原点对称的两个的纵横坐标都是互为相反数”是前提.
10、1
【解析】
试题解析:连接EF,
∵OD=OC,
∵OE⊥OF
∴∠EOD+∠FOD=90°
∵正方形ABCD
∴∠COF+∠DOF=90°
∴∠EOD=∠FOC
而∠ODE=∠OCF=41°
∴△OFC≌△OED,
∴OE=OF,CF=DE=3cm,则AE=DF=4,
根据勾股定理得到EF==1cm.
故答案为1.
11、1
【解析】
由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.
【详解】
∵图象过(4.5,0)
∴高铁列车和普快列车在C站相遇
∵AC=2BC,
∴V高铁=2V普快,
BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,
此时普快离开C站1×=120千米,
当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,
故答案为:1.
此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.
12、t V 15
【解析】
∵在关系式V=31-2t中,V随着t的变化而变化,
∴在关系式V=31-2t中,自变量是;因变量是;
在V=31-2t中,由可得:,解得:,
∴当时,.
故答案为(1);(2);(3)15.
13、(1,2)(答案不唯一).
【解析】
由于y的值随x值的增大而增大,根据一次函数的增减性得出k>0,可令k=1,那么y=x+1,然后写出点P的坐标即可.
【详解】
解:由题意可知,k>0即可,
可令k=1,那么一次函数y=kx+1即为y=x+1,
当x=1时,y=2,
所以点P的坐标可以是(1,2).
故答案为(1,2)(答案不唯一).
本题考查了一次函数图象上点的坐标特征,一次函数的性质,得出k>0是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、a≥﹣,且a≠.
【解析】
分析: 分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据x为非负数求出a的范围即可.
本题解析:分式方程去分母得:2x=3a﹣4x+4,
解得:x=,
根据题意得:≥0,且≠1,
解得:a≥﹣,且a≠.
15、 (1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.1;(3)初赛成绩为1.65 m的运动员能进入复赛.
【解析】
试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.
试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a的值是25;
(2)、观察条形统计图得:=1.61;
∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65;
将这组数据从小到大排列为,其中处于中间的两个数都是1.1, 则这组数据的中位数是1.1.
(3)、能; ∵共有20个人,中位数是第10、11个数的平均数,
∴根据中位数可以判断出能否进入前9名;
∵1.65m>1.1m, ∴能进入复赛
考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数
16、解:(1) 方案一:y=60x+10000;
当0≤x≤100时,y=100x;
当x>100时,y=80x+2000;
(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,
当60x+10000=80x+2000时,即x=400时,两种方案都可以,
当60x+10000<80x+2000时,即x>400时,选方案一进行购买;
(3) 甲、乙单位购买本次足球赛门票分别为500张、200张.
【解析】
(1)根据题意可直接写出用x表示的总费用表达式;
(2)根据方案一与方案二的函数关系式分类讨论;
(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.
【详解】
解:(1) 方案一:y=60x+10000;
当0≤x≤100时,y=100x;
当x>100时,y=80x+2000;
(2)因为方案一y与x的函数关系式为y=60x+10000,
∵x>100,方案二的y与x的函数关系式为y=80x+2000;
当60x+10000>80x+2000时,即x<400时,选方案二进行购买,
当60x+10000=80x+2000时,即x=400时,两种方案都可以,
当60x+10000<80x+2000时,即x>400时,选方案一进行购买;
(3) 设甲、乙单位购买本次足球赛门票数分别为a张、b张;
∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,
∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.
① b≤100时,乙公司购买本次足球赛门票费为100b,
解得不符合题意,舍去;
② 当b>100时,乙公司购买本次足球赛门票费为80b+2000,
解得符合题意
答:甲、乙单位购买本次足球赛门票分别为500张、200张.
17、(1)一次函数解析式为 y= -x+1 (1)a=− (3)存在,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).
【解析】
(1)根据勾股定理求出A、B两点坐标,利用待定系数法即可解决问题;
(1)根据S四边形ABCD=S△AOB+S△BOC计算即可,列出方程即可求出a的值;
(3)分三种情形讨论即可解决问题;
【详解】
(1)在 Rt△ABO中,∠OAB=45°,
∴∠OBA=∠OAB-∠OAB=90°-45°=45°
∴∠OBA=∠OAB
∴OA=OB
∴OB1+OA1=AB1即:1OB1=(1)1,
∴OB=OA=1
∴点A(1,0),B(0,1).
∴
解得:
∴一次函数解析式为 y= -x+1.
(1)如图,
∵S△AOB=×1×1=1,S△BOC=×1×|a|= -a,
∴S四边形ABCD=S△AOB+S△BOC=1-a,
∵S△ABC=S四边形ABCO-S△AOC=1-a-×1×=-a,
当△ABC的面积与△ABO面积相等时,−a=1,解得a=−.
(3)在x轴上,存在点P,使△PAB为等腰三角形
①当PA=PB时,P(0,0),
②当BP=BA时,P(-1,0),
③当AB=AP时,P(1-1,0)或(1+1,0),
综上所述,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).
本题考查一次函数综合题、解直角三角形、待定系数法、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是学会圆分割法求多边形面积,学会用分类讨论的思想思考问题,属于中考常考题型.
18、证明见解析.
【解析】
如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,想办法证明四边形MNQJ是平行四边形即可解决问题;
【详解】
证明:如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,DG.
四边形AECD是平行四边形,
,同法可证:,
,,
同法可证:,,
,,
四边形MNQJ是平行四边形,
与MQ互相平分,
,,,
、C、Q共线,
,C,K三点共线.
本题考查平行四边形的性质和判定,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、9≤a<1
【解析】
解不等式3x−a≤0得x≤,其中,最大的正整数为3,故3≤<4,从而求解.
【详解】
解:解不等式3x−a≤0,得x≤,
∵不等式的正整数解是1,2,3,
∴3≤<4,
解得9≤a<1.
故答案为:9≤a<1.
本题考查了一元一次不等式的解法.先解含字母系数的不等式,再根据正整数解的情况确定字母的取值范围.
20、105°
【解析】
根据垂直平分线的性质,可知,BD=CD,进而,求得∠BCD的度数,由,,可知,∠ACD=80°,即可得到结果.
【详解】
根据尺规作图,可知,MN是线段BC的中垂线,
∴BD=CD,
∴∠B=∠BCD,
又∵,
∴∠A=∠ADC=50°,
∵∠B+∠BCD=∠ADC=50°,
∴∠BCD==25°,
∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,
∴=∠BCD+∠ACD=25°+80°=105°.
本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.
21、中位数
【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
【详解】
解:由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少即可,故答案为:中位数.
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
22、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
23、
【解析】
通过完全平方公式即可解答.
【详解】
解:已知a+ = ,
则= =10,
则= =6,
故a-=.
本题考查完全平方公式的运用,熟悉掌握是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)54°;(2)见解析;(3)85;(4)甲班20同名同学的成绩比较整齐.
【解析】
试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;
(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;
(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;
(4)根据方差的意义即可做出评价.
解:(1)6÷30%=20,
3÷20=15%,
360°×15%=54°;
(2)20﹣6﹣3﹣6=5,统计图补充如下:
(3)20﹣1﹣7﹣8=4,=85;
(4)∵S甲2<S乙2,
∴甲班20同名同学的成绩比较整齐.
25、(1)甲种图书的单价为30元/本,乙种图书的单价为1元/本;(2)乙种图书最多能买2本.
【解析】
(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,根据“用180元购买乙种图书比要购买甲种图书少2本”列分式方程即可求出结论;
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,根据“购买图书的总费用不超过5000元”列出不等式即可得出结论.
【详解】
解:(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,
依题意,得:-=2,
解得:x=30,
经检验,x=30是所列分式方程的解,且符合题意,
∴1.5x=1.
答:甲种图书的单价为30元/本,乙种图书的单价为1元/本.
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,
依题意,得:30(150-m)+1m≤5000,
解得:m≤.
∵m为整数,
∴m的最大值为2.
答:乙种图书最多能买2本.
此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
26、探究:证明见详解;应用:
【解析】
探究:根据正方形的性质得到AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.求得∠ACB=∠ACD=45°,根据全等三角形的性质得到ED=EB,∠EDC=∠EBC,求得∠EFB=∠EDC,根据等腰三角形的判定定理即可得到结论;
应用:连接DF,求得△DEF是等腰直角三角形,根据勾股定理得到CF=,由三角形的面积公式即可得到结论.
【详解】
解:探究:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.
∴∠ACB=∠ACD=45°,
又∵EC=EC,
∴△EDC≌△EBC(SAS),
∴ED=EB,∠EDC=∠EBC,
∵EF⊥ED,
∴∠DEF=90°,
∴∠EFC+∠EDC=180°
又∵∠EBC+∠EBF=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF;
应用:连接DF,
∵EF=DE,∠DEF=90°,
∴△DEF是等腰直角三角形,
∵DE=2,
∴EF=2,DF= ,
∵∠DCB=90°,CD=1,
∴CF=,
∴四边形EFCD的面积=S△DEF+S△CDF= .
故答案为:.
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的识别图形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
分数(分)
人数(人)
70
7
80
90
1
100
8
2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市岳麓区长郡梅溪湖数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南长沙长郡梅溪湖中学2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份湖南长沙长郡梅溪湖中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。
2023-2024学年湖南长沙长郡梅溪湖中学八上数学期末学业水平测试试题含答案: 这是一份2023-2024学年湖南长沙长郡梅溪湖中学八上数学期末学业水平测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,当分式有意义时,x的取值范围是,下列分式中和分式的值相等的是,在,分式的个数有等内容,欢迎下载使用。