2024年黑龙江省哈尔滨市萧红中学数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小亮在同一直角坐标系内作出了和的图象,方程组的解是( )
A.B.C.D.
2、(4分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
A.平均数B.中位数C.众数D.方差
3、(4分)随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元
4、(4分)如果一个多边形的内角和等于它的外角和,那么这个多边形是( )
A.六边形B.五边形C.四边形D.三角形
5、(4分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是( )
A.B.C.D.
6、(4分)已知一个直角三角形的两边长分别为3和5,则第三边长为 ( )
A.4B.4或34C.16或34D.4或
7、(4分)如果多项式是一个完全平方式,那么的值为
A.B.C.D.
8、(4分)下面哪个点在函数的图象上( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.
10、(4分)如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.
11、(4分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
12、(4分)已知关于的一元二次方程的一个根是2,则______.
13、(4分)如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.
例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0∴m=﹣3,n=3
为什么要对2n2进行了拆项呢?
聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程..
解决问题:
(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;
(2)已知a、b、c是△ABC的三边长,满足a2+b2=10a+12b﹣61,c是△ABC中最短边的边长,且c为整数,那么c可能是哪几个数?
15、(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,到达目的地后停止,设慢车行驶时间为小时,两车之间的距离为千米,两者的关系如图所示,根据图象探究:
(1)看图填空:两车出发 小时,两车相遇;
(2)求快车和慢车的速度;
(3)求线段所表示的与的关系式,并求两车行驶小时两车相距多少千米.
16、(8分)如图
如图1,四边形ABCD和四边形BCMD都是菱形,
(1)求证:∠M=60°
(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;
(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长
17、(10分)直线过点,直线过点,求不等式的解集.
18、(10分)某工厂生产的件新产品,需要精加工后才能投放市场.现把精加工新产品的任务分给甲、乙两人,甲加工新产品的数量要比乙多.
(1)求甲、乙两人各需加工多少件新产品;
(2)已知乙比甲平均每天少加工件新产品,用时比甲多用天时间.求甲平均每天加工多少件新产品.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.
20、(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.
21、(4分)如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.
22、(4分)将直线向上平移个单位,得到直线_______。
23、(4分)若+(y﹣2)2=0,那么(x+y)2018=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)嘉琪准备完成题目“计算:”时,发现“”处的数字印刷得不清楚.他把“”处的数字猜成3,请你计算.
25、(10分)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
26、(12分)如图,将矩形纸片()折叠,使点刚好落在线段上,且折痕分别与边,相交于点,,设折叠后点,的对应点分别为点,.
(1)判断四边形的形状,并证明你的结论;
(2)若,且四边形的面积,求线段的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由数形结合可得,直线和的交点即为方程组
的解,可得答案.
【详解】
解:由题意得:直线和的交点即为方程组
的解,可得图像上两直线的交点为(-2,2),
故方程组的解为,
故选B.
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
2、C
【解析】
此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.
【详解】
解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴鞋店最喜欢的是众数.
故选C.
考点:统计量的选择.
3、D
【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
【详解】
解:A、∵200÷10=20(元/本),
∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
B、∵200+16×(30﹣10)=520(元),
∴a=520,B选项正确;
D、∵200×2﹣200﹣16×(20﹣10)=40(元),
∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
故选D.
考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
4、C
【解析】
根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360 °列方程求解即可.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°=360°,
n﹣2=2,
n=1.
故选:C.
本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.
5、D
【解析】
通过点经过四边形各个顶点,观察图象的对称趋势问题可解.
【详解】
、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.
故选:.
本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.
6、D
【解析】
解:∵个直角三角形的两边长分别为3和5,
∴①当5是此直角三角形的斜边时,设另一直角边为x,则x=;
②当5是此直角三角形的直角边时,设另一直角边为x,则x=.
故选D.
7、D
【解析】
分析:完全平方差公式是指:,根据公式即可得出答案.
详解:根据完全平方公式可得:-m=±6,则m=±6,故选D.
点睛:本题主要考查的是完全平方公式,属于基础题型.明白完全平方公式的形式是解题的关键.
8、B
【解析】
把各点坐标代入解析式即可求解.
【详解】
A. ,y=4×1-2=2≠-2,故不在直线上;
B. ,y=4×3-2=10,故在直线上;
C. ,y=4×0.5-2=0,故不在直线上;
D. ,y=4×(-3)-2=-14,故不在直线上.
故选B.
此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.
【详解】
解:∵AE的垂直平分线为DG
∴AF=EF,∠AFG=∠EFD=90°,DA=DE
∵四边形ABCD是平行四边形
∴DC∥AB,AD∥BC,DC=AB,
∴∠DEA=∠BAE
∵AE平分∠BAD交CD于点E
∴∠DAE=∠BAE
∴在△DEF和△GAF中
∴△DEF≌△GAF(ASA)
∴DE=AG
又∵DE∥AG
∴四边形DAGE为平行四边形
又∵DA=DE
∴四边形DAGE为菱形.
∴AG=AD
∵AD=4cm
∴AG=4cm
∵BG=1cm
∴AB=AG+BG=4+1=1(cm)
故答案为:1.
本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.
10、1
【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.
【详解】
解:∵,,
根据勾股定理得,
∵四边形是平行四边形,
,
∴当取最小值时,线段最短,即时最短,
是的中位线,
,
,
故答案为:1.
本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.
11、(-2,-2)
【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
【详解】
“卒”的坐标为(﹣2,﹣2),
故答案是:(﹣2,﹣2).
考查了坐标确定位置,关键是正确确定原点位置.
12、1
【解析】
根据关于x的一元二次方程x2−2ax+3a=0有一个根为2,将x=2代入方程即可求得a的值.
【详解】
解:∵关于x的一元二次方程x2−2ax+3a=0有一个根为2,
∴22−2a×2+3a=0,
解得,a=1,
故答案为1.
此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可解决问题.
13、
【解析】
分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
【详解】
解:过点E作ME⊥AD,延长ME交BC与N,
∵四边形ABCD是矩形
∴AD∥BC,且ME⊥DA
∴EN⊥BC 且∠A=90°=∠ABC=90°
∴四边形ABNM是矩形
∴AB=MN=5,AM=BN
若ME:EN=1:4,如图1
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵折叠
∴BE=AB=5,AP=PE
在Rt△BEN中,BN==3
∴AM=3
在Rt△PME中,PE2=ME2+PM2
AP2=(3﹣AP)2+1
解得AP=
若ME:EN=4:1,则EN=1,ME=4,如 图2
在Rt△BEN中,BN==2
∴AM=2
在Rt△PME中,PE2=ME2+PM2
AP2=(2﹣AP )2+16
解得AP=
若点E在矩形外,如图
∵EN:EM=1:4
∴EN=,EM=
在Rt△BEN中,BN==
∴AM=
在Rt△PME中,PE2=ME2+PM2
AP2=(AP﹣)2+()2
解得:AP=5
故答案为,,5.
本题考查矩形的性质、折叠的性质和勾股定理,注意分情况讨论是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1) 1;(2)c为2,3,1.
【解析】
(1)已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y的值,即可求出的值;
(2)由a2+b2=10a+12b-61,得a,b的值.进一步根据三角形一边边长大于另两边之差,小于它们之和,则b-a<c<a+b,即可得到答案.
【详解】
(1)∵x2﹣1xy+5y2+2y+1=0,
∴x2﹣1xy+1y2+y2+2y+1=0,
则(x﹣2y)2+(y+1)2=0,
解得x=﹣2,y=﹣1,
故;
(2)∵a2+b2=10a+12b﹣61,
∴(a﹣5)2+(b﹣6)2=0,
∴a=5,b=6,
∵1<c<11,且c为最短边,c为整数,
∴c为2,3,1.
此题主要考查了完全平方公式的变形应用,解题关键是如何对已知问题拆分变形,构造完全平方公式,然后直接判断求解即可.
15、(1)两车出发1.8小时相遇;(2)快车速度为;慢车速度为;(3),
【解析】
(1)根据图象可知两车出发1.8小时相遇;
(2)根据图象和题意可以分别求出慢车和快车的速度;
(3)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,再把x=6代入求出对应的y值即可得出两车行驶6小时两车相距多少千米.
【详解】
(1)由图知:两车出发1.8小时相遇.
(2)快车8小时到达,慢车12小时到达,
故:快车速度为
慢车速度为
(3)由题可得,点C是快车刚到达乙地,
∵点C的横坐标是8,
∴纵坐标是:100×8=800,
即点C的坐标为(8,800).
设线段BC对应的函数解析式为y=kx+b,
∵点B(1.8,0),点C(8,800),
∴,解得,
∴线段BC所表示的y与x的函数关系式是y=250x-1200(1.8≤x≤8).
当x=6时,y=250×6-1200=300,
即两车行驶6小时两车相距300千米.
本题考查一次函数的应用,路程、速度与时间关系的应用,待定系数法求一次函数的解析式以及求函数值,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、(1)证明见解析 (2)证明见解析 (3)
【解析】
(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;
(2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;
(3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.
【详解】
(1)证明:∵ 四边形ABCD和四边形BCMD都是菱形,
∴BC=CD=AD,BC=DM=CM
∴CD=DM=CM=AD,
∴△CDM是等边三角形,
∴∠M=60°。
(2)解: 如图2,过点E作EG∥CM交CD的延长线于点G,
∴∠G=∠HCF=60°,∠GED=∠M=60°,
∴∠G=∠GED=∠EDG=60°,
∴△EDG是等边三角形
∴EG=DE;
∵AD=CM,AE=MF,
∴DE=CF,
∴EG=CF;
在△EGH和△FCH中,
∴△EGH≌△FCH(AAS)
∴EH=FH.
(3)解: 如图3,设BD,EF交于点N,
由(1)(2)的证明过程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,
∵EF⊥CM,
∴∠EFM=90°,
∴∠HED=90°-60°=30°,
∠CDM=∠HED+∠EHD=60°
∴∠EHD=60°-30°=30°=∠HED=∠CHF
∴ED=DH=CF,
在R△CHF中,∠CHF=30°
∴CH=2CH=2DH,
∴CD=CH+DH=3DH=3
解之:DH=CF=1
∵菱形CBDM,EF⊥CM
∴BD∥CM
∴EF⊥BD;
∴∠DNH=∠BNH=90°,
在Rt△DHN中,∠DHN=30°,DH=1
∴DN=DHsin∠30°=,
NH=DHcs30°=;
∴BN=BD-DN=3-=,
在Rt△BHN中,
BH=.
本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行线的性质、勾股定理、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质是解题的关键.
17、
【解析】
将代入,可解得k的值,将代入,可解得m的值,再将k和m的值代入不等式,解不等式即可
【详解】
解:将代入得:,解得:k=1;
将代入得:,解得:;
∴,
则可得
解得
故答案为:
本题考查待定系数法求一次函数的解析式以及不等式的解法,,比较简单,应熟练掌握
18、(1)甲、乙两人分别需加工件、件产品;(2)甲平均每天加工件产品
【解析】
(1)方法一:先求得乙的加工的产品件数,即可求得甲需加工的产品件数;方法二:设乙需加工件产品,结合题意列出甲、乙需加工的产品件数即可.
(2)设甲平均每天加工件产品,则乙平均每天加工件产品,结合题意列出方程求解即可.
【详解】
解:(1)方法一:乙的加工的产品件数为:
则甲需加工的产品件数为:
方法二:设乙需加工件产品,则甲需加工件零件,
根据题意,得.
解得
所以,
甲、乙两人分别需加工件、件产品.
(2)设甲平均每天加工件产品,则乙平均每天加工件产品,
由题意可得
解得
经检验它们都是原方程的根,但不符合题意.
答:甲平均每天加工件产品
此题考查一元一次方程,解题关键在于结合题意列出方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得 AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC= 9+m,MN=n,CM= 9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,
从而可得 CN= -(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得- 2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.
【详解】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,
则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,
∵∠CAD=2∠BAE,
∴∠BAE=∠DAM,
∵四边形ABCD是矩形,
∴AB=CD=9,∠B=∠D=90°,AD=BC,
∴△ABE∽△ADM,
∴AB:AD=BE:DM,
又∵AM=AM,
∴△ADM≌△ANM,
∴AN=AD,MN=DM,
设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,
∵AB:AD=BE:DM,
∴,即9n=m(9+m),
∵∠B=90°,∴AC=,
∴CN=AC-AN=-(9+m),
在Rt△CMN中,CM2=CN2+MN2,
即(9-n)2=n2+[-(9+m)]2,
∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
又∵9n=m(9+m),
∴81- 2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
即- 2m(9+m)=2(9+m)2-2(9+m),
∴=9+2m,
∴92+(9+m)2=(9+2m)2,
即m2+6m-27=0,
解得m=3或m=-9(舍去),
∴AE=,
故答案为:.
本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.
20、n2+2n
【解析】
试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.
解:第n个图形需要黑色棋子的个数是n2+2n.
故答案为:n2+2n.
21、2
【解析】
在Rt△ACB中,,由题意设BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解决问题。
【详解】
解:在中,,
由题意设,
∵,
∴,
∴,
∴,
∴,
∴,
故答案为2.
本题考查旋转变换、直角三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由参数构建方程解决问题,所以中考常考题型.
22、
【解析】
根据平移k不变,b值加减即可得出答案.
【详解】
平移后解析式为:y=2x−1+4=2x+3,
故答案为:y=2x+3
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
23、1
【解析】
直接利用偶次方的性质以及算术平方根的定义得出x,y的值,进而得出答案.
【详解】
∵+(y-2)2=0,
∴x+3=0,y-2=0,
解得:x=-3,y=2,
则(x+y)2018=(-3+2)2018=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
先将括号内的二次根式进行化简再进行乘法计算,最后去括号,合并即可得到结果.
【详解】
原式
.
本题考查了二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.
25、(1)证明见解析(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形
【解析】
(1)证明:∵AB=AC
点D为BC的中点
∴∠BAE=∠CAE
又∵AB=AC,AE=AE
∴△ABE≌△ACE(SAS)
(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形
∵AE=2AD,∴AD=DE
又点D为BC中点,∴BD=CD
∴四边形ABEC为平行四形
∵AB=AC
∴四边形ABEC为菱形
26、(1)四边形为菱形,理由见解析;(2)
【解析】
(1)根据折叠的性质可得EC=EG,GF=CF,,由GF∥EC,可得,进一步可得GE=GF,于是可得结论;
(2)根据题意可先求得CE的长,过点E作EK⊥GF于点K,在Rt△GEK中,根据勾股定理可求得GK的长,于是FK可求,在Rt△EFK中,再利用勾股定理即可求得结果.
【详解】
(1)四边形为菱形,理由如下:
证明:由折叠可得:,,,
又∵,
∴,
∴,
∴,
∴,
∴四边形为菱形.
(2)如图,∵四边形为菱形,且其面积为,∴,
∴,
过点E作EK⊥GF于点K,则EK=AB=4,
在Rt△GEK中,由勾股定理得:,
∴,
在Rt△EFK中,由勾股定理得:.
本题考查了矩形的性质、折叠的性质、菱形的判定方法和勾股定理等知识,知识点虽多,但难度不大,熟练掌握折叠的性质、菱形的判定方法和勾股定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
10
2
1
1
2024年黑龙江省哈尔滨市69中学数学九年级第一学期开学监测试题【含答案】: 这是一份2024年黑龙江省哈尔滨市69中学数学九年级第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省平和第一中学数学九上开学学业质量监测试题【含答案】: 这是一份2024年福建省平和第一中学数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。