2024年广东省广州白云区六校联考数学九年级第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是( )
A.B.
C.D.
2、(4分)小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选出两个作为补充条件,使平行四边形ABCD成为正方形(如图所示).现有下列四种选法,你认为其中错误的是( )
A.①②B.②④C.①③D.②③
3、(4分)若关于的一元二次方程有解,则的值可为( )
A.B.C.D.
4、(4分)下列命题的逆命题,是假命题的是( )
A.两直线平行,内错角相等B.全等三角形的对应边相等
C.对顶角相等D.有一个角为度的三角形是直角三角形
5、(4分)一次函数y=-3x+2的图象不经过( )
A.第四象限B.第三象限C.第二象限D.第一象限
6、(4分)一元一次不等式组的解集为x>a,则a与b的关系为( )
A.a>bB.a
A.李师傅上班处距他家200米
B.李师傅路上耗时20分钟
C.修车后李师傅骑车速度是修车前的2倍
D.李师傅修车用了5分钟
8、(4分)已知一次函数y=kx﹣b(k≠0)图象如图所示,则kx﹣1<b的解集为( )
A.x>2B.x<2C.x>0D.x<0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当1≤x≤5时,
10、(4分)函数向右平移1个单位的解析式为__________.
11、(4分)如图是甲、乙两射击运动员的10次射击训练成绩的折射线统计图,则射击成绩较稳定的是__________(填“甲”或“乙”)。
12、(4分)某商品经过连续两次降价,售价由原来的25元/件降到16元/件,则平均每次降价的百分率为_____.
13、(4分)如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)如图,若图中小正方形的边长为1,则△ABC的面积为______.
(2)反思(1)的解题过程,解决下面问题:若,,(其中a,b均为正数)是一个三角形的三条边长,求此三角形的面积.
15、(8分)如图,在平面直角坐标系中,O为坐标原点,▱AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.
(1)求反比例函数的表达式;
(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.
16、(8分)如图,点的纵坐标为,过点的一次函数的图象与正比例函数的图象相交于点.
(1)求该一次函数的解析式.
(2)若该一次函数的图象与轴交于点,求的面积.
17、(10分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”某校本学年开展了读书活动,在这次活动中,八年级班40名学生读书册数的情况如表
根据表中的数据,求:
(1)该班学生读书册数的平均数;
(2)该班学生读书册数的中位数.
18、(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉子听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉子得1分,本次决赛,学生成绩为x(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有________名学生参加;
(2)直接写出表中:a= ,b= 。
(3)请补全右面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,则等于______.
20、(4分)方程=0的解是___.
21、(4分)已知:AB=2m,CD=28cm,则AB:CD=_____.
22、(4分)在平面直角坐标系中,点P(1,-3)关于原点O对称的点的坐标是________.
23、(4分)计算:若,求的值是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,反比例函数的图象与一次函数的图象交于点,,点的横坐标实数4,点在反比例函数的图象上.
(1)求反比例函数的表达式;
(2)观察图象回答:当为何范围时,;
(3)求的面积.
25、(10分)如图,的对角线相交于点分别为的中点.求证:.
26、(12分)小东到学校参加毕业晚会演出,到学校时发现演出道具还放在家中,此时距毕业晚会开始还有25分钟,于是立即步行回家.同时,他父亲从家里出发骑自行车以他3倍的速度给他送道具,两人在途中相遇,相遇后,小东父亲立即骑自行车以原来的速度载小东返回学校.图中线段AB、OB表示相遇前(含相遇)父亲送道具、小东取道具过程中,各自离学校的路程S(米)与所用时间t分)之间的函数关系,结合图象解答下列问题.
(1)求点B坐标;
(2)求AB直线的解析式;
(3)小东能否在毕业晚会开始前到达学校?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.
【详解】
由勾股定理可得:
A、三角形三边分别为3、,2;
B、三角形三边分别为、,2;
C、三角形三边分别为、2,3;
D、三角形三边分别为2、,;
∵D图中(2)2+()2=()2,其他三角形不符合勾股定理逆定理,
∴图中的三角形是直角三角形的是D,
故选:D.
此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.
2、D
【解析】
利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.
【详解】
A、∵四边形ABCD是平行四边形,
当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,
当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
C、∵四边形ABCD是平行四边形,
当①AB=BC时,平行四边形ABCD是菱形,
当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,
当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意.
故选D.
此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.
3、A
【解析】
根据判别式的意义得到△,然后解不等式求出的范围后对各选项进行判断.
【详解】
解:根据题意得:△,
解得.
故选:.
本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.
4、C
【解析】
根据平行线的判定与性质,可判断A;
根据全等三角形的判断与性质,可判断B;
根据对顶角性质,可判断C;
根据直角三角形的判断与性质,可判断D.
【详解】
A“两直线平行,内错角相等”的逆命题是“内错角相等,两直线平行”是真命题,故A不符合题意;
B“全等三角形的对应边相等”的逆命题是“三边对应相等的两个三角形全等”是真命题,故B不符合题意;
C“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故C符合题意;
D“有一个角为90度的三角形是直角三角形”的逆命题是“直角三角形中有一个角是90度”是真命题,故D不符合题意;
故选C
本题考查了命题与定理,熟练掌握相关性质定理是解答本题的关键.
5、B
【解析】
根据一次函数的图像与性质,结合k=-3<0,b=2>0求解即可.
【详解】
∵k=-3<0,b=2>0,
∴一次函数y=-3x+2的图象经过一二四象限,不经过第三象限.
故选B.
题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
6、C
【解析】
【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.
【详解】∵一元一次不等式组的解集是x>a,
∴根据不等式解集的确定方法:大大取大,
∴a≥b,
故选C.
【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.
7、A
【解析】
观察图象,明确每一段小明行驶的路程,时间,作出判断.
【详解】
A.李师傅上班处距他家2000米,此选项错误;
B.李师傅路上耗时20分钟,此选项正确;
C.修车后李师傅骑车速度是=200米/分钟,修车前速度为=100米/分钟,∴修车后李师傅骑车速度是修车前的2倍,此选项正确;
D.李师傅修车用了5分钟,此选项正确.
故选A.
本题考查了学生从图象中读取信息的能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
8、C
【解析】
将kx-1<b转换为kx-b<1,再根据函数图像求解.
【详解】
由kx-1<b得到:kx-b<1.
∵从图象可知:直线与y轴交点的坐标为(2,1),
∴不等式kx-b<1的解集是x>2,
∴kx-1<b的解集为x>2.
故选C.
本题考查的是一次函数的图像,熟练掌握函数图像是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.
试题解析:∵1≤x≤5,
∴x-1≥2,x-5≤2.
故原式=(x-1)-(x-5)=x-1-x+5=1.
考点: 二次根式的性质与化简.
10、或
【解析】
根据“左加右减,上加下减”的规律即可求得.
【详解】
解:∵抛物线向右平移1个单位
∴抛物线解析式为或.
本题考查的是二次函数,熟练掌握二次函数的平移是解题的关键.
11、乙
【解析】
从折线图中得出甲乙的射击成绩,再利用方差的公式计算.
【详解】
解:由图中知,甲的成绩为8,9,7,8,10,7,9,10,7,10,
乙的成绩为7,7,8,9,8,9,10,9,9,9,
=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35
乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,
∴S2乙<S2甲.
故答案为:乙.
本题考查了方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
12、20%
【解析】
设平均每次降价的百分率为x,根据该商品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
解:设平均每次降价的百分率为x,
依题意,得:25(1﹣x)2=16,
解得:x1=0.2=20%,x2=1.8(不合题意,舍去).
故答案为:20%.
本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.
13、20
【解析】
先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.
【详解】
因为,四边形ABCD是菱形,
所以,AD=AB,
因为,AE:AD=3:5,
所以,AE:AB=3:5,
所以,AE:BE=3:2,
因为,BE=2,
所以,AE=3,AB=CD=5,
所以,DE= ,
所以,菱形ABCD的面积是AB∙DE=5×4=20
故答案为20
本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.
三、解答题(本大题共5个小题,共48分)
14、(1)3.5;(2)的面积为:.
【解析】
(1)根据图形可知:△ABC的面积等于以3为边长的正方形面积与三个直角三角洲面积之差,代入数据即可得出结论;
(2)构造以5a为长、2b为宽的矩形,利用(1)的面积的求法,代入数据即可得出结论.
【详解】
解:(1)S△ABC=3×3-×1×2×2×3×1×3=3.5,
故答案为:3.5;
(2)构造如图的矩形:
设每个单位矩形的长为,宽为,则:
,,,
则的面积等于大矩形面积与三个直角三角形面积的差,
故的面积为:.
本题考查勾股定理的应用以及三角形的面积,解题的关键是:(1)利用分割图形法求三角形面积;(2)构建矩形.本题属于基础题,难度不大,解决该题型题目时,通过构建矩形,利用分割图形法求不规则的图形的面积是关键.
15、(1)y=;(2)当0<x<2或x>6时,反比例函数的值大于一次函数的值.
【解析】
(1)根据平行四边形的性质求得点B的坐标为(2,3),代入反比例函数的解析式即可求得k值,从而求得反比例函数的表达式;(2)先求得m的值,根据图象即可求解.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=BC,OA∥BC,
而A(﹣2,0)、C(0,3),
∴B(2,3);
设所求反比例函数的表达式为y=(k≠0),
把B(2,3)代入得k=2×3=6,
∴反比例函数解析式为y=;
(2)把D(m,1)代入y=得m=6,则D(6,1),
∴当0<x<2或x>6时,反比例函数的值大于一次函数的值.
本题主要考查了反比例函数点的坐标与反比例函数解析式的关系及平行四边形的性质,关键是熟练掌握凡是反比例函数图象经过的点都能满足解析式.解决第(2)问时,利用了数形结合的数学思想.
16、(1);(2).
【解析】
(1)利用正比例函数,求得点B坐标,再利用待定系数法即可求得一次函数解析式;
(2)利用一次函数解析式求得点D坐标,即可求的面积.
【详解】
(1)把代入中,得,
所以点的坐标为,
设一次函数的解析式为,
把和代入,得,解得,
所以一次函数的解析式是;
(2)在中,令,则,
解得,则的坐标是,
所以.
本题为考查一次函数基础题,考点涉及利用待定系数法求一次函数解析式以及求一次函数与坐标轴交点坐标,熟练掌握一次函数相关知识点是解答本题的关键.
17、 (1) 该班学生读书册数的平均数为册.(2) 该班学生读书册数的中位数为册.
【解析】
(1)根据平均数=读书册数总数÷读书总人数,求出该班同学读书册数的平均数;
(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.
【详解】
解:该班学生读书册数的平均数为:册,
答:该班学生读书册数的平均数为册.
将该班学生读书册数按照从小到大的顺序排列,
由图表可知第20名和第21名学生的读书册数分别是6册和7册,
故该班学生读书册数的中位数为:册.
答:该班学生读书册数的中位数为册.
本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
18、(1)50;(2)20,0.24;(3)详见解析;(4)52%.
【解析】
(1)根据表格中的数据可以求得本次决赛的学生数;
(2)根据(1)中决赛学生数,可以求得a、b的值;
(3)根据(2)中a的值,可以将频数分布直方图补充完整;
(4)根据表格中的数据可以求得本次大赛的优秀率.
【详解】
解:(1)由表格可得,
本次决赛的学生数为:10÷0.2=50,
故答案为:50;
(2)a=50×0.4=20,b=12÷50=0.24,
故答案为:20,0.24;
(3)补全的频数分布直方图如右图所示,
(4)由表格可得,
决赛成绩不低于80分为优秀率为:(0.4+0.12)×100%=52%,
故答案为:52%.
本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
依据比例的基本性质,即可得到5a=7b,进而得出=.
【详解】
解:∵,
∴5a-5b=2b,
即5a=7b,
∴=,
故答案为:.
本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.
20、x=5.
【解析】
把两边都平方,化为整式方程求解,注意结果要检验.
【详解】
方程两边平方得:(x﹣3)(x﹣5)=0,
解得:x1=3,x2=5,
经检验,x2=5是方程的解,
所以方程的解为:x=5.
本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.
21、50:7
【解析】
先将2m转换为200cm,再代入计算即可.
【详解】
∵AB=2m=200cm,CD=28cm,
∴AB:CD=200:28=50:7.
故答案为50:7.
本题考查比例线段,学生们掌握此定理即可.
22、(﹣1,3)
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),然后直接作答即可.
【详解】
根据中心对称的性质,可知:点P(1,−3)关于原点O中心对称的点P`的坐标为(−1,3).
故答案为:(﹣1,3).
此题考查关于原点对称的点的坐标,解题关键在于掌握其性质.
23、﹣.
【解析】
试题分析:∵-=3,
∴y-x=3xy,
∴====.
故答案为:.
点睛:本题考查了分式的化简求值,把已知进行变形得出y-x=3xy,并进行整体代入是解决此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)反比例函数的表达式为y=;(2)x<﹣2或0<x<2时,y1>y2;(3)△PAB的面积为1.
【解析】
(1)利用一次函数求得B点坐标,然后用待定系数法求得反函数的表达式即可;
(2)观察图象可知,反函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,则S△AOP=S△BOP,即S△PAB=2S△AOP,再求出点P的坐标,利用待定系数法求得直线AP的函数解析式,得到点C的坐标,然后根据S△AOP=S△AOC+S△POC,即可求得结果.
【详解】
(1)将x=2代入y2=得:y=1,
∴B(2,1),
∴k=xy=2×1=2,
∴反比例函数的表达式为y=;
(2)由正比例函数和反比例函数的对称性可知点A的横坐标为﹣2.
∵y1>y2,
∴反比例函数图象位于正比例函数图象上方,
∴x<﹣2或0<x<2;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图,
∵点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP,
y1=中,当x=1时,y=2,
∴P(1,2),
设直线AP的函数关系式为y=mx+n,
把点A(﹣2,﹣1)、P(1,2)代入y=mx+n,
得,
解得m=3,n=1,
故直线AP的函数关系式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
=OC•AR+OC•PS
=×3×2+×3×1
=,
∴S△PAB=2S△AOP=1.
25、见解析
【解析】
利用平行四边形得到,由E、F分别为OC、OA的中点得到OE=OF,由此证明△OBE≌△ODF,得到BE=DF.
【详解】
∵四边形是平行四边形,
∴.
∵分别是的中点,
∴,
∴.
在和中,
∴,
∴.
此题考查平行四边形的对角线相等的性质,线段中点的性质,利用SAS证明三角形全等,将所证明的等量线段放在全等三角形中证明三角形全等的思路很关键,解题中注意积累方法.
26、(1)点B的坐标为(15,900);(2)s=﹣180t+310;(3)小东能在毕业晚会开始前到达学校.
【解析】
(1)由图象可知:父子俩从出发到相遇时花费了15分钟,设小东步行的速度为x米/分,则小东父亲骑车的速度为3x米/分,依题意得:
15(x+3x)=310,
解得:x=1.
∴两人相遇处离学校的距离为1×15=900(米).
∴点B的坐标为(15,900);
(2)设直线AB的解析式为:s=kt+b.
∵直线AB经过点A(0,310)、B(15,900)
∴
∴直线AB的解析式为:s=﹣180t+310;
(3)解法一:
小东取道具遇到父亲后,赶往学校的时间为: =5(分),
∴小东从取道具到赶往学校共花费的时间为:15+5=20(分),
∵20<25,
∴小东能在毕业晚会开始前到达学校.
解法二:
在s=﹣180t+310中,令s=0,即﹣180t+310=0,解得:t=20,
即小东的父亲从出发到学校花费的时间为20(分),
∵20<25,
∴小东能在毕业晚会开始前到达学校.
题号
一
二
三
四
五
总分
得分
批阅人
读书册数
4
5
6
7
8
人数人
6
4
10
12
8
广东省广州白云区六校联考2023-2024学年数学九年级第一学期期末统考试题含答案: 这是一份广东省广州白云区六校联考2023-2024学年数学九年级第一学期期末统考试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件是必然事件的是等内容,欢迎下载使用。
广东省广州白云区六校联考2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案: 这是一份广东省广州白云区六校联考2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案,共6页。试卷主要包含了点A,如图,在中,,则等于,若,则的值是等内容,欢迎下载使用。
广东省广州白云区六校联考2023-2024学年八上数学期末检测试题含答案: 这是一份广东省广州白云区六校联考2023-2024学年八上数学期末检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。