|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年甘肃省定西市渭源县九年级数学第一学期开学经典试题【含答案】
    立即下载
    加入资料篮
    2024年甘肃省定西市渭源县九年级数学第一学期开学经典试题【含答案】01
    2024年甘肃省定西市渭源县九年级数学第一学期开学经典试题【含答案】02
    2024年甘肃省定西市渭源县九年级数学第一学期开学经典试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年甘肃省定西市渭源县九年级数学第一学期开学经典试题【含答案】

    展开
    这是一份2024年甘肃省定西市渭源县九年级数学第一学期开学经典试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)不等式组的解集是( )
    A.B.C.D.
    2、(4分)点(﹣2,﹣3)关于原点的对称点的坐标是( )
    A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)
    3、(4分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
    A.当AB=BC时,四边形ABCD是菱形
    B.当AC⊥BD时,四边形ABCD是菱形
    C.当∠ABC=90°时,四边形ABCD是矩形
    D.当AC=BD时,四边形ABCD是正方形
    4、(4分)下列各式计算正确的是
    A.B.
    C.D.
    5、(4分)下列命题中,真命题是( )
    A.平行四边形的对角线相等 B.矩形的对角线平分对角
    C.菱形的对角线互相平分 D.梯形的对角线互相垂直
    6、(4分)如果点P(-2,b)和点Q(a,-3)关于x轴对称,则的值是( )
    A.1B.-1C.5D.-5
    7、(4分)二次根式在实数范围内有意义,则的取值范围是( )
    A.B.C.D.
    8、(4分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
    A.2cmB.4cmC.6cmD.8cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果的值为负数,则 x 的取值范围是_____________.
    10、(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为 ______cm.
    11、(4分)如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.
    12、(4分)已知直线不经过第一象限,则的取值范围是_____________。
    13、(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)用适当的方法解方程
    (1)
    (2)
    15、(8分)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.
    (1)如图1,①∠BEC=_________°;
    ②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;
    (2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.
    16、(8分)如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.
    (1)当m=时,求证:四边形ABEF是正方形.
    (2)记四边形ABEF的面积为S,求S关于m的函数关系式.
    (3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.
    17、(10分)如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.
    (1)求证:△CEF≌△AEF;
    (2)联结DE,当BD=2CD时,求证:AD=2DE.
    18、(10分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.
    (2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
    20、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.
    21、(4分)如图,正方形面积为,延长至点,使得,以为边在正方形另一侧作菱形,其中,依次延长类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点则四边形的面积为___________.
    22、(4分)二项方程在实数范围内的解是_______________
    23、(4分)菱形的两条对角线分别为18cm与24cm,则此菱形的周长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐示系xOy中,直线与直线交于点A(3,m).
    (1)求k,m的値;
    (2)己知点P(n,n),过点P作垂直于y轴的直线与直线交于点M,过点P作垂直于x轴的直线与直线交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.
    25、(10分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
    (1)求证:EO=FO;
    (2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
    (3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .
    26、(12分)如图,在平面直角坐标系中,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.
    (1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;
    (2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】
    解:
    解不等式①得:x ⩽ 2,
    解不等式②得:x>−3,
    ∴不等式组的解集为:−3故选:A.
    本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    2、A
    【解析】
    平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.
    【详解】
    解:点(﹣2,﹣3)关于原点的对称点的坐标是(2,3),
    故选:A.
    本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.
    3、D
    【解析】
    根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.
    【详解】
    A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项不符合题意;
    B. 根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项不符合题意;
    C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项不符合题意;
    D. 根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项符合题意;
    故选:D.
    此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.
    4、D
    【解析】
    根据二次根式的运算法则即可求解.
    【详解】
    A. 不能计算,故错误;
    B. 不能计算,故错误;
    C. ,故错误;
    D. ,正确
    故选D.
    此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则.
    5、C
    【解析】
    根据平行四边形、矩形、菱形、梯形的性质判断即可.
    【详解】
    解:A、“平行四边形的对角线相等”是假命题;
    B、“矩形的对角线平分对角”是假命题;
    C、“菱形的对角线互相平分”是真命题;
    D、“梯形的对角线互相垂直”是假命题.
    故选C.
    正确的命题是真命题,错误的命题是假命题.
    6、A
    【解析】
    关于x轴对称,则P、Q横坐标相同,纵坐标互为相反数,即可求解.
    【详解】
    ∵点P(-2,b)和点Q(a,-3)关于x轴对称
    ∴a =-2,b=3

    故选A.
    本题考查坐标系中点的对称,熟记口诀“关于谁对称谁不变,另一个变号”是关键.
    7、B
    【解析】
    根据二次根式的被开方数是非负数解题.
    【详解】
    解:依题意,得
    a-1≥0,
    解得,a≥1.
    故选:B.
    考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    8、A
    【解析】
    由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.
    【详解】
    根据平行四边形的性质得AD∥BC,
    ∴∠EDA=∠DEC,
    又∵DE平分∠ADC,
    ∴∠EDC=∠EDA,
    ∴∠EDC=∠DEC,
    ∴CD=CE=AB=6,
    即BE=BC﹣EC=8﹣6=1.
    故选:A.
    本题考查了平行四边形的性质的应用,及等腰三角形的判定,属于基础题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    根据分式的值为负数,分子的最小值为1,得出分母小于0列出关于x的不等式,求出不等式的解集即可得到x的范围.
    【详解】
    ∵,,
    ∴,
    解得.
    故答案为
    本题考查分式的值.分式的值要为负,那么分母和分子必须异号,在本题中分子已经为正,那么分母只能为负.
    10、3
    【解析】
    ∵四边形ABCD为正方形,
    ∴AB=BC,∠ABC=90°.
    ∵AE⊥l,CF⊥l,
    ∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.
    ∵∠ABE+∠ABC+∠FBC=180°,
    ∴∠ABE+∠FBC=90°,
    ∴∠EAB=∠FBC.
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(AAS),
    ∴BE=CF=2cm,BF=AE=1cm,
    ∴EF=BE+BF=2+1=3cm.
    故答案为3.
    11、
    【解析】
    由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.
    【详解】
    由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,
    过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,
    ∵△ABO是等边三角形,
    ∴OM=AO=×4=2,∴BN=OM=2,
    在Rt△OBM中,BM===2,
    ∴ON=BM=2,
    ∵C,
    ∴CN=ON+OC=2+=3,
    在Rt△BNC中,BC=,
    即PC+AP的最小值为,
    故答案为.
    本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.
    12、
    【解析】
    当m-3>0时,直线均经过第一象限;当m-3<0时,直线与y轴交点≤0时不经过第一象限.
    【详解】
    解:当m-3>0,即m>3时,直线均经过第一象限,不合题意,则m<3;
    当m<3时,只有-3m+1≤0才能使得直线不经过第一象限,解得,
    综上,的取值范围是:.
    本题考查了一次函数系数与象限位置的关系,注意分类讨论.
    13、x1=﹣1,x1=﹣1.
    【解析】
    利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.
    【详解】
    解:由“关联数”定义得一次函数为y=x+m﹣1,
    又∵此一次函数为正比例函数,∴m﹣1=0,
    解得:m=1,
    ∴关于x的方程为x1+3x+1=0,
    因式分解得:(x+1)(x+1)=0,
    ∴x+1=0或x+1=0,
    ∴x1=﹣1,x1=﹣1;
    故答案为x1=﹣1,x1=﹣1.
    本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、见详解.
    【解析】
    (1)把x+1看成一个整体,利用直接开平方法求解即可.
    (2)先把它化成一般式,再利用公式法求解即可.
    【详解】
    解:(1)
    X+1=
    X=-1
    (2)
    ∵a=2,b=-5,c=-1.
    ∴=b2-4ac=(-5)2-42(-1)=25+8=33>0.
    ∴x===.
    本题考查了一元二次方程 的解法,灵活运用一元二次方程的
    解法是解题的关键.
    15、(1)①45;②△ADE≌△ECF,理由见解析;(2)2.
    【解析】
    (1)①根据矩形的性质得到,根据角平分线的定义得到,根据三角形内角和定理计算即可;
    ②利用定理证明;
    (2)连接,证明四边形是矩形,得到,根据勾股定理求出即可.
    【详解】
    (1)①∵四边形ABCD为矩形,
    ∴∠ABC=∠BCD=90°,
    ∵BE平分∠ABC,
    ∴∠EBC=45°,
    ∴∠BEC=45°,
    故答案为45;
    ②△ADE≌△ECF,
    理由如下:∵四边形ABCD是矩形,
    ∴∠ABC=∠C=∠D=90°,AD=BC.
    ∵FE⊥AE,
    ∴∠AEF=90°.
    ∴∠AED+∠FEC=180°-∠AEF=90°.
    ∵∠AED+∠DAE=90°,
    ∴∠FEC=∠EAD,
    ∵BE平分∠ABC,
    ∴∠BEC=45°.
    ∴∠EBC=∠BEC.
    ∴BC=EC.
    ∴AD=EC.
    在△ADE和△ECF中,

    ∴△ADE≌△ECF;
    (2)连接HB,如图2,
    ∵FH∥CD,
    ∴∠HFC=180°-∠C=90°.
    ∴四边形HFCD是矩形.
    ∴DH=CF,
    ∵△ADE≌△ECF,
    ∴DE=CF.
    ∴DH=DE.
    ∴∠DHE=∠DEH=45°.
    ∵∠BEC=45°,
    ∴∠HEB=180°-∠DEH-∠BEC=90°.
    ∵NH∥BE,NB∥HE,
    ∴四边形NBEH是平行四边形.
    ∴四边形NBEH是矩形.
    ∴NE=BH.
    ∵四边形ABCD是矩形,
    ∴∠BAH=90°.
    ∵在Rt△BAH中,AB=4,AH=2,
    本题考查的是矩形的判定和性质、全等三角形的判定和性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.
    16、 (1)证明见解析;(2)S=m(m>0);(3)满足条件的F坐标为(,2)或(,4).
    【解析】
    (1)只要证明△ABO≌△CBE,可得AB=BE,即可解决问题;
    (2)在Rt△AOB中利用勾股定理求出AB,证明△ABO∽△CBE,利用相似三角形的性质求出BE即可解决问题;
    (3)分两种情形I.当点A与D重合时,II.当点G在BC边上时,画出图形分别利用直角三角形和等边三角形求解即可.
    【详解】
    解:(1)如图1中,
    ∵m=,B(,0),
    ∴D(0,),
    ∴OD=OB=,
    ∴矩形OBCD是正方形,
    ∴BO=BC,
    ∵∠OBC=∠ABE=90°,
    ∴∠ABO=∠CBE,∵∠BOA=∠BCE=90°,
    ∴△ABO≌△CBE,
    ∴AB=BE,
    ∵四边形ABEF是平行四边形,
    ∴四边形ABEF是菱形,
    ∵∠ABE=90°,
    ∴四边形ABEF是正方形.
    (2)如图1中,
    在Rt△AOB中,∵OA=1,OB=,
    ∴AB==2,
    ∵∠OBC=∠ABE=90°,
    ∴∠OBA=∠CBE,
    ∵∠BOA=∠BCE=90°,
    ∴△ABO∽△CBE,
    ∴,
    ∴ ,
    ∴BE=m,
    ∴S=AB•BE=m(m>0).
    (3)①如图2中,当点A与D重合时,点G在矩形OBCD的边CD上.
    ∵tan∠ABO=,
    ∴∠ABO=30°,
    在Rt△ABE中,∠BAE=∠ABO=30°,AB=2,
    ∴AE=,
    ∵AG=GE,
    ∴AG=,
    ∴G(,1),设F(m,n),
    则有,,
    ∴m=,n=2,
    ∴F(,2).
    ②如图3中,当点G在BC边上时,作GM⊥AB于M.
    ∵四边形ABEF是矩形,
    ∴GB=GA,
    ∵∠GBO=90°,∠ABO=30°,
    ∴∠ABG=60°,
    ∴△ABG是等边三角形,
    ∴BG=AB=2,
    ∵FG=BG,
    ∴F(,4),
    综上所述,满足条件的F坐标为(,2)或(,4).
    本题考查四边形综合题、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    17、(1)见解析;(2)见解析.
    【解析】
    (1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;
    (2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD=2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CEFD为平行四边形,可得出DE=CF,再由CF=AF,等量代换得到DE=AF.
    【详解】
    证明:(1)∵∠ACB=90°,且E线段AB中点,
    ∴CE=AB=AE,
    ∵∠ACD=90°,F为线段AD中点,
    ∴AF=CF=AD,
    在△CEF和△AEF中,

    ∴△CEF≌△AEF(SSS);
    (2)连接DE,
    ∵点E、F分别是线段AB、AD中点,
    ∴EF=BD,EF∥BC,
    ∵BD=2CD,
    ∴EF=CD.
    又∵EF∥BC,
    ∴四边形CFEDD是平行四边形,
    ∴DE=CF,
    ∵CF=AF=FD,
    ∴AD=2DE.
    此题考查了全等三角形的判定与性质,中位线定理,直角三角形斜边上的中线等于斜边的一半,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
    18、(1)详见解析;(2)以上结论仍然成立.
    【解析】
    (1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,则利用等角的余角相等得到∠GAE=∠OBE,则可根据”ASA“判断△AOF≌△BOE,从而得到OF=OE;
    (2)同样方法证明△AOF≌△BOE,仍然得到OF=OE.
    【详解】
    解:(1)证明:∵四边形ABCD为正方形,
    ∴OA=OB,∠AOB=∠BOC=90°,
    ∵AG⊥BE于点G,
    ∴∠AGE=90°,
    ∴∠GAE=∠OBE,
    在△AOF和△BOE中,,
    ∴△AOF≌△BOE(ASA),
    ∴OF=OE;
    (2)解:以上结论仍然成立.理由如下:
    同样可证明△AOF≌△BOE(ASA),所以OF=OE.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据锐角三角函数的定义以及正方形的性质即可求出答案.
    【详解】
    解:设正方形的边长为x,
    ∴CE=ED=x,
    ∴AE=AC-CE=12-x,
    在Rt△ABC中,

    在Rt△ADE中,

    ∴,
    ∴解得:x=,
    故答案为:.
    本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
    20、1或.
    【解析】
    分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.
    【详解】
    在菱形ABCD中,∵∠A=60°,AD=,
    ∴AC=3,
    ①当CG=BC=时,AG=AC=CG=3-,
    ∴AP=AG=.
    ②当GC=GB时,易知GC=1,AG=2,
    ∴AP=AG=1,
    故答案为1或.
    本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题
    21、
    【解析】
    如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=,进一步可得,再延长NS交ML于点Z,利用全等三角形性质与判定证明四边形FHMN为正方形,最后进一步求解即可.
    【详解】
    如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,
    ∵ABCD为正方形,
    ∴∠CDG=∠GDK=90°,
    ∵正方形ABCD面积为1,
    ∴AD=CD=AG=DQ=1,
    ∴DG=CT=2,
    ∵四边形DEFG为菱形,
    ∴DE=EF=DG=2,
    同理可得:CT=TN=2,
    ∵∠EFG=45°,
    ∴∠EDG=∠SCT=∠NTK=45°,
    ∵FE∥DG,CT∥SN,DG⊥CT,
    ∴∠FQP=∠FRN=∠DQE=∠NKT=90°,
    ∴DQ=EQ=TK=NK=,FQ=FE+EQ=,
    ∵∠NKT=∠KQR=∠FRN=90°,
    ∴四边形NKQR是矩形,
    ∴QR=NK=,
    ∴FR=FQ+QR=,NR=KQ=DK−DQ=,
    ∴,
    再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),
    ∴FN=MN,∠NFR=∠MNZ,
    ∵∠NFR+∠FNR=90°,
    ∴∠MNZ+∠FNR=90°,
    即∠FNM=90°,
    同理可得:∠NFH=∠FHM=90°,
    ∴四边形FHMN为正方形,
    ∴正方形FHMN的面积=,
    故答案为:.
    本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.
    22、x=-1
    【解析】
    由2x1+54=0,得x1=-27,解出x值即可.
    【详解】
    由2x1+54=0,得x1=-27,
    ∴x=-1,
    故答案为:x=-1.
    本题考查了立方根,正确理解立方根的意义是解题的关键.
    23、60cm
    【解析】
    试题分析:根据菱形的性质对角线互相垂直平分,利用勾股定理求出菱形的边长即可解决问题.
    【详解】
    解:如图,四边形ABCD是菱形,AC=24,BD=18,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=OC=12,OD=OB=9,AB=BC=CD=AD,
    ∴AD==1.
    ∴菱形的周长为=60cm.
    故答案为60cm
    【点评】
    本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) k=-2;(2) n的取值范围为:或
    【解析】
    (1)把A点坐标代入y=x-2中,求得m的值,再把求得的A点坐标代入y=kx+7中,求得k的值;
    (2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN≤2PM,列出n的不等式,再求得结果.
    【详解】
    (1)∵直线y=kx+7与直线y=x-2交于点A(3,m),
    ∴m=3k+3,m=1.
    ∴k=-2.
    (2)∵点P(n,n),过点P作垂宜于y轴的直线与直线y=x-2交于点M,
    ∴M(n+2,n).
    ∴PM=2.
    ∴PN≤2PM,
    ∴PN≤4.
    ∵过点P作垂直于x轴的直线与直线y=kx+7交于点N,k=-2,
    ∴N(n,-2n+7).
    ∴PN=|3n-7|.
    当PN=4时,如图,即|3n-7|=4,
    ∴n=l或n=
    ∵P与N不重合,
    ∴|3n-7|0.

    当PN≤4(即PN≤2PM)吋,
    n的取值范围为:或
    本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.
    25、(1)详见解析;(2)当点O运动到AC的中点时,四边形CEAF是矩形,理由详见解析;(3)1.
    【解析】
    (1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;
    (2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;
    (3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.
    【详解】
    (1)证明:∵EF∥BC,
    ∴∠OEC=∠BCE,
    ∵CE平分∠ACB,
    ∴∠BCE=∠OCE,
    ∴∠OEC=∠OCE,
    ∴EO=CO,
    同理:FO=CO,
    ∴EO=FO;
    (2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:
    由(1)得:EO=FO,
    又∵O是AC的中点,
    ∴AO=CO,
    ∴四边形CEAF是平行四边形,
    ∵EO=FO=CO,
    ∴EO=FO=AO=CO,
    ∴EF=AC,
    ∴四边形CEAF是矩形;
    (3)解:由(2)得:四边形CEAF是矩形,
    ∴∠AEC=90°,
    ∴AC===5,
    △ACE的面积=AE×EC=×3×4=6,
    ∵122+52=132,
    即AB2+AC2=BC2,
    ∴△ABC是直角三角形,∠BAC=90°,
    ∴△ABC的面积=AB•AC=×12×5=30,
    ∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=1;
    故答案为1.
    本题考查了角平分线的概念,三角形的性质,矩形的判断以及四边形与几何动态综合,知识点综合性强,属于较难题型.
    26、(1),;(2).
    【解析】
    (1)先将点C坐标代入,利用待定系数法可求得y1的解析式,继而求得点A的坐标,点B坐标,根据B、C坐标利用待定系数法即可求得y2的解析式;
    (2)分别过点作轴于点,轴于点,连接,由三角形中线的性质可得,再根据反比例函数的比例系数的几何意义可得,从而可得,设点的横坐标为,则点坐标表示为、,继而根据梯形的面积公式列式进行计算即可.
    【详解】
    (1)由已知,点在的图象上,
    ∴,∴,
    ∵点 的横坐标为,∴点为,
    ∵点与点关于原点对称,
    ∴为,
    把,代入得,
    解得:,
    ∴;
    (2)分别过点作轴于点,轴于点,连接,
    ∵为中点 ,

    ∵点在双曲线上,

    ∴ ,
    设点的横坐标为,
    则点坐标表示为、,
    ∴,
    解得 .
    本题考查了反比例函数与一次函数综合,涉及了待定系数法,反比例函数k的几何意义,熟练掌握和灵活运用相关知识是解题的关键.
    题号





    总分
    得分
    相关试卷

    2024年甘肃省渭源县九年级数学第一学期开学达标测试试题【含答案】: 这是一份2024年甘肃省渭源县九年级数学第一学期开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省靖远县数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024-2025学年甘肃省靖远县数学九年级第一学期开学经典模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年甘肃省定西市渭源县数学九上期末质量检测模拟试题含答案: 这是一份2023-2024学年甘肃省定西市渭源县数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图4,,方程x2-x-1=0的根是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map