![2024年安徽省蚌埠局属九年级数学第一学期开学学业水平测试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16197345/0-1727414247088/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年安徽省蚌埠局属九年级数学第一学期开学学业水平测试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16197345/0-1727414247137/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年安徽省蚌埠局属九年级数学第一学期开学学业水平测试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16197345/0-1727414247154/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年安徽省蚌埠局属九年级数学第一学期开学学业水平测试试题【含答案】
展开
这是一份2024年安徽省蚌埠局属九年级数学第一学期开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一个五边形有三个内角都是直角,另两个内角的度数都等于,则等于( )
A.B.C.D.
2、(4分)如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是( )
A.B.C.D.
3、(4分)使下列式子有意义的实数x的取值都满足的式子的是( )
A.B.C.D.
4、(4分)在平面直角坐标系中,点P(-2,+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)某校有15名同学参加区数学竞赛.已知有8名同学获奖,他们的竞赛得分均不相同.若知道某位同学的得分.要判断他能否获奖,在下列15名同学成绩的统计量中,只需知道( )
A.方差B.平均数C.众数D.中位数
6、(4分)在一条笔直的公路上有、两地,甲乙两人同时出发,甲骑自行车从地到地,乙骑自行车从地到地,到达地后立即按原路返回地.如图是甲、乙两人离地的距离与行驶时间之间的函数图象,下列说法中①、两地相距30千米;②甲的速度为15千米/时;③点的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时. 正确的个数为( )
A.1个B.2个C.3个D.4个
7、(4分)一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是( )
A.B.C.D.
8、(4分)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有( )
A.2个B.3个C.4个D.5个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)
10、(4分)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为 cm.
11、(4分)方程的解是__________.
12、(4分)如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.
13、(4分).在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF∥BC,交DE的延长线于点F,连结BF.
(1)求证:四边形ADBF是平行四边形;
(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.
15、(8分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
16、(8分)如图,在△ABC中,AC=BC,∠C=36°,AD平分∠BAC交BC于点D.求证:AB=DC.
17、(10分)甲、乙两名自行车爱好者准备在段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:
(1)乙的速度为多少米/秒;
(2)当乙追上甲时,求乙距起点多少米;
(3)求线段BC所在直线的函数关系式.
18、(10分)因式分解:am2﹣6ma+9a.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)实数64的立方根是4,64的平方根是________;
20、(4分)使代数式有意义的的取值范围是________.
21、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
22、(4分)如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为_____.
23、(4分)分解因式:______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并求出其整数解.
25、(10分)如图,在中,点在边上,点在边的延长线上,且,与交于点.
(1)求证:;
(2)若点是的中点,,求边的长.
26、(12分)在平面直角坐标系中,点.
(1)直接写出直线的解析式;
(2)如图1,过点的直线交轴于点,若,求的值;
(3)如图2,点从出发以每秒1个单位的速度沿方向运动,同时点从出发以每秒0.6个单位的速度沿方向运动,运动时间为秒(),过点作交轴于点,连接,是否存在满足条件的,使四边形为菱形,判断并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
多边形的内角和可以表示成(n-2)•180°,因为所给五边形有三个角是直角,另两个角都等于α,列方程可求解.
【详解】
依题意有
3×90+2α=(5-2)•180,
解得α=1.
故选C.
本题考查根据多边形的内角和计算公式求多边形的内角,解答时要会根据公式进行正确运算、变形和数据处理.
2、B
【解析】
对于已知直线,分别令x与y为0求出对应y与x的值,确定出A与B的坐标,在x轴上取一点B′,使AB=AB′,连接MB′,由AM为∠BAO的平分线,得到∠BAM=∠B′AM,利用SAS得出两三角形全等,利用全等三角形的对应边相等得到BM=B′M,设BM=B′M=x,可得出OM=8-x,在Rt△B′OM中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出M坐标,设直线AM解析式为y=kx+b,将A与M坐标代入求出k与b的值,即可确定出直线AM解析式.
【详解】
对于直线,
令x=0,求出y=8;令y=0求出x=6,
∴A(6,0),B(0,8),即OA=6,OB=8,
根据勾股定理得:AB=10,
在x轴上取一点B′,使AB=AB′,连接MB′,
∵AM为∠BAO的平分线,
∴∠BAM=∠B′AM,
∵在△ABM和△AB′M中,
,
∴△ABM≌△AB′M(SAS),
∴BM=B′M,
设BM=B′M=x,则OM=OB﹣BM=8﹣x,
在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,
根据勾股定理得:x2=42+(8﹣x)2,
解得:x=5,
∴OM=1,即M(0,1),
设直线AM解析式为y=kx+b,
将A与M坐标代入得:,
解得:,
则直线AM解析式为y=﹣x+1.
故选B.
此题考查了一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,一次函数与坐标轴的交点,勾股定理,全等三角形的判定与性质,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.
3、D
【解析】
根据二次根式有意义的条件依次判断各项即可.
【详解】
选项A,,-x≥0且,解得x≤0且x≠-1,选项A错误;
选项B,,x+1>0,解得x>-1,选项B错误;
选项C,,x+1≥0且1-x≥0,解得-1≤x≤1,选项C错误;
选项D, ,x-1≥0且1-x≠0,解得x>1,选项D正确.
故选D.
本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.
4、B
【解析】
∵-20,+10,
∴点P (-2,+1)在第二象限,
故选B.
5、D
【解析】
15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能获奖,只需要了解自己的成绩以及全部成绩的中位数,比较即可。
【详解】
解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否得奖,故应知道自已的成绩和中位数.
故选:D.
本题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、C
【解析】
根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.
【详解】
解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:
y甲=-15x+30
y乙=
由此可知,①②正确.
当15x+30=30x时,
解得x=
则M坐标为(,20),故③正确.
当两人相遇前相距10km时,
30x+15x=30-10
x=,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
解得x=
∴④错误.
故选C.
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
7、C
【解析】
根据题意,判断a0,由一次函数图象的性质可得到直线的大概位置.
【详解】
因为,一次函数y=ax+b,b>0,且y随x的增大而减小,
所以,a
相关试卷
这是一份2024-2025学年安徽省合肥市科大附中数学九年级第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省蚌埠市局属学校2023-2024学年九年级数学第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了下列命题中,正确的个数是,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份安徽省蚌埠局属学校2023-2024学年数学九上期末调研试题含答案,共8页。试卷主要包含了下列事件中,是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)