


2024-2025学年浙江省绍兴市皋埠镇中学九上数学开学质量跟踪监视模拟试题【含答案】
展开这是一份2024-2025学年浙江省绍兴市皋埠镇中学九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x折,则有
A.B.
C.D.
2、(4分)某种长途电话的收费方式为,接通电话的第一分钟收费a元,之后每一分钟收费b元,若某人打此种长途电话收费8元钱,则他的通话时间为
A.分钟B.分钟C.分钟D.分钟
3、(4分)以下列各组数为边长,不能构成直角三角形的是( )
A.3,4,5B.9,12,15C.,2,D.0.3,0.4,0.5
4、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为( )
A.5B.6C.8D.12
5、(4分)(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
6、(4分)要使分式有意义,则x的取值应满足( )
A.B.C.D.
7、(4分)下列四个图案中,是轴对称图形,但不是中心对称图形的是( )
A.B.C.D.
8、(4分)符.则下列不等式变形错误的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.
10、(4分)如图,在矩形ABCD,BE平分,交AD于点E,F是BE的中点,G是BC的中点,连按EC,若,,则FG的长为________。
11、(4分)菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为 cm.。
12、(4分)如图,一根旗杆在离地面5 m处断裂,旗杆顶部落在离旗杆底部12 m处,旗杆断裂之前的高为____.
13、(4分)关于x的不等式组的解集为x<3,那么m的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
解:∵a2c2﹣b2c2=a4﹣b4 (A)
∴c2(a2﹣b2)=(a2+b2)(a2﹣b2) (B)
∴c2=a2+b2 (C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .
15、(8分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛. 现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)分别求表格中、、的值.
(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.
16、(8分)春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.
(1)让小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?
(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A, B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?
17、(10分)(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请仅用无刻度直尺,在边AD上找点F,使.
(2)如图2,四边形ABCD是菱形,E为BC上任意一点,请仅用无刻度直尺,在边DC上找点M,使.
18、(10分)如图1,在平面直角坐标系中,直线与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC,点C为直角顶点,连接OC.
(1)直接写出= ;
(2)请你过点C作CE⊥y轴于E点,试探究OB+OA与CE的数量关系,并证明你的结论;
(3)若点M为AB的中点,点N为OC的中点,求MN的值;
(4)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线于点P,求点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知:线段
求作:菱形,使得且.
以下是小丁同学的作法:
①作线段;
②分别以点,为圆心,线段的长为半径作弧,两弧交于点;
③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;
④连接,,.
则四边形即为所求作的菱形.(如图)
老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.
20、(4分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.
21、(4分)已知反比例函数,当时,y的取值范围是________.
22、(4分)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.
23、(4分)要使在实数范围内有意义,a 应当满足的条件是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.
(1)试探究线段AG与CE的大小关系,并证明你的结论;
(2)若AG恰平分∠BAC,且BE=1,试求AB的长;
(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.
25、(10分)为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示
(1)根据图示填写下表
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.
26、(12分)如图,直线与轴相交于点,与轴相交于点,且,.
(1)求直线的解析式;
(2)若在直线上有一点,使的面积为4,求点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设该店春装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.
【详解】
解:设该店春装原本打x折,
依题意,得:500()2=1.
故选:C.
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
2、C
【解析】
解决此题要清楚一分钟收费a元,则一分钟后共打了分.再根据题意求出结果.
【详解】
首先表示一分钟后共打了分,
则此人打长途电话的时间共是+1= 分。
故选C.
本题考查列代数式,根据题意列出正确的分式是解题关键.
3、C
【解析】
通过边判断构成直角三角形必须满足,两短边的平方和=长边的平方.即通过勾股定理的逆定理去判断.
【详解】
A. ,能构成直角三角形
B.,构成直角三角形
C. ,不构成直角三角形
D. ,构成直角三角形
故答案为C
本题考查了勾股定理的逆定理:如果三角形的的三边满足 ,那么这个三角形为直角三角形.
4、B
【解析】
由平行四边形的性质得出BC=AD=5,OA=OC=AC=3, OB=OD= BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.
【详解】
解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,
∴BC=AD=5,OA=OC=AC=3, OB=OD= BD=4,
∵
∴△OBC是直角三角形,
∴ .
故选:B.
本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.
5、A
【解析】
【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.
【详解】因为s=0.002
故选A
【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.
6、A
【解析】
解:∵ 在实数范围内有意义,
∴.
∴
故选A.
7、A
【解析】
A、是轴对称图形,不是中心对称图形,符合题意;
B、不是轴对称图形,也不是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,也是中心对称图形,不符合题意.
故选A.
8、B
【解析】
利用不等式基本性质变形得到结果,即可作出判断.
【详解】
解:由
可得:,故A变形正确;
,故B变形错误;
,故C变形正确;
,故D变形正确.
故选:B.
此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.
【详解】
解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,
∴△=(-2a)2-4×1×1=0,
解得:a=±1.
故答案为:±1.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.
10、5
【解析】
根据BE平分∠ABC,可得∠ABE=45°,△ABE是等腰直角三角形,再根据勾股定理可得EC,根据F是BE的中点,G是BC的中点,可判定FG是△BEC的中位线,即可求得FG=EC .
【详解】
∵矩形ABCD中,BE平分∠ABC,
∴∠A=90°,∠ABE=45°,
∴ABE是等腰直角三角形,
∴AE=AB
又∵ABCD是矩形,
∴AB=BC=14, DC=AB=8,∠EDC=90°,
∴DE=AD-AE=14-8=6,
EC=,
∵F是BE的中点,G是BC的中点,
∴FG=EC=5 .
故答案为5 .
本题考查了角平分线的定义、等腰三角形的判定与性质、勾股定理三角形中位线的定义以及三角形中位线的性质 .
11、
【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。
12、18m
【解析】
旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,
所以折断的旗杆与地面形成了一个直角三角形.
根据勾股定理,折断的旗杆为=13m,
所以旗杆折断之前高度为13m+5m=18m.
故答案为18m.
13、m≥1
【解析】
首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.
【详解】
,
解①得x<1,
∵不等式组的解集是x<1,
∴m≥1.
故答案是:m≥1.
本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
三、解答题(本大题共5个小题,共48分)
14、(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.
【解析】【分析】(1)根据题目中的书写步骤可以解答本题;
(2)根据题目中B到C可知没有考虑a=b的情况;
(3)根据题意可以写出正确的结论.
【详解】(1)由题目中的解答步骤可得,
错误步骤的代号为:C,
故答案为:C;
(2)错误的原因为:没有考虑a=b的情况,
故答案为:没有考虑a=b的情况;
(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,
故答案为:△ABC是等腰三角形或直角三角形.
【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.
15、 (1)a=1,b=1,c=8;(2)甲,乙
【解析】
(1)首先根据统计图中的信息,可得出乙的平均成绩a和众数c;根据统计图,将甲的成绩从小到大重新排列,即可得出中位数b;
(2)根据甲乙的中位数、众数和方差,可以判定参赛情况.
【详解】
(1)a=×(3+6+4+8×3+1×2+9+10)=1.
∵甲射击的成绩从小到大从新排列为:5、6、6、1、1、1、1、8、8、9,
∴b=1.c=8.
(2)甲的方差较大,说明甲的成绩波动较大,而且甲的成绩众数为1,故如果其他参赛选手的射击成绩都在1环左右,应该选甲参赛更适合;乙的中位数和众数都接近8,故如果其他参赛选手的射击成绩都在8环左右,应该选乙参赛更适合.
此题主要考查根据统计图获取信息,熟练掌握,即可解题.
16、(1)小王共购进A水果25箱,B水果9箱;(2)应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.
【解析】
(1)根据题意中的相等关系“A种水果x箱的批发价+B种水果y箱的批发价=1200元,A种水果赚的钱+B种水果赚的钱=215元”列方程组求解即可;
(2)先用x表示y,列出利润w的关系式,再根据题意求出x的取值范围,然后根据一次函数的性质求出w的最大值及购进方案.
【详解】
解:(1)根据题意,得
,即,解得.
答:小王共购进A水果25箱,B水果9箱.
(2)设获得的利润为w元,根据题意得,
∵,∴,
∵A水果的数量不得少于B水果的数量,
∴,即,解得.
∴,
∵,∴w随x的增大而减小,
∴当x=15时,w最大=225,此时.
即应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.
本题考查了二元一次方程组的应用、一元一次不等式的解法和一次函数的性质,正确理解题意列出方程组、灵活应用一次函数的性质是解此题的关键.
17、(1)答案见解析;(2)答案见解析.
【解析】
(1)先连接AC、BD,再连接对角线交点O与E点与DA的交点F即为所求;
(2)连接AC,DE交于点O,再连接O点与B点交CD于M点,M点即为所求.
【详解】
解:(1)如下图,点F即为所求:
(2)如下图,点M即为所求:
本题考查的是无刻度尺规作图,主要用到的知识点为三角形全等的判定与性质.
18、(1) 4;(2)OB+OA=2CE;见解析;(3)MN=;(4)P(,).
【解析】
(1)令x=0,求出y的值,令y=0,求出x的值,即可得出OA,OB的长,根据三角形面积公式即可求出结果;
(2)过点C作CF⊥x轴,垂足为点F,易证△CEB≌△CFA与四边形CEOF是正方形,从而得AF=BE,CE=BE=OF,由OB=OE-BE,AO=OF+AF可得结论;
(3)求出C点坐标,利用中点坐标公式求出点M,N的坐标,进而用两点间的距离公式求解即可得出结论;
(4)先判断出点B是AQ的中点,进而求出Q的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.
【详解】
(1)∵直线y=-x+2交坐标轴于A,B两点,
令x=0,则y=2,令y=0,则x=4,
∴BO=2,AO=4,
∴=;
(2)作CF⊥x轴于F,作CE⊥y轴于E,如图,
∴∠BFC=∠AEC=90°
∵∠EOF=90°,
∴四边形OECF是矩形,
∴CF=OE,CE=OF,∠ECF=90°,
∵∠ACB=90°
∴∠BCF=∠ACE,
∵BC=AC,
∴△CFB≌△CEA,
∴CF=CE,AF=BE,
∴四边形OECF是正方形,
∴OE=OF=CE=CF,
∴OB=OE-BE,OA=OF+AF,
∴OB+OA=OE+OF=2CE;
(3)由(2)得CE=3,
∴OE=3,
∴OF=3,
∴C(3,3);
∵M是线段AB的中点,而A(4,0),B(0,2),
∴M(2,1),
同理:N(,),
∴MN=;
(3)如图②延长AB,DP相交于Q,
由旋转知,BD=AB,
∴∠BAD=∠BDA,
∵AD⊥DP,
∴∠ADP=90°,
∴∠BDA+∠BDQ=90°,∠BAD+∠AQD=90°,
∴∠AQD=∠BDQ,∴BD=BQ,
∴BQ=AB,
∴点B是AQ的中点,
∵A(4,0),B(0,2),
∴Q(-4,4),
∴直线DP的解析式为y=-x①,
∵直线DO交直线y=x+5②于P点,
联立①②解得,x=-,y=,
∴P(-,).
此题是一次函数综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,等腰三角形的判定和性质,中点坐标公式,两点间的距离公式,求出点C的坐标是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形
【解析】
利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.
【详解】
解:由作法得AD=BD=AB=a,CD=CB=a,
∴△ABD为等边三角形,AB=BC=CD=AD,
∴∠A=60°,四边形ABCD为菱形,
故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.
本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.
20、x>1
【解析】
试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.
试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;
由于两直线的交点横坐标为:x=1,
观察图象可知,当x>1时,x+b>ax+3;
考点:一次函数与一元一次不等式.
21、
【解析】
利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.
【详解】
∵k=1>0,
∴在每个象限内y随x的增大而减小,
又∵当x=1时,y=1,
当x=2时,y=5,
∴当1<x<2时,5<y<1.
故答案为.
本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.
22、1
【解析】
众数是一组数据中出现次数最多的数据,有时众数可以不止一个.
【详解】
解:在这一组数据中1是出现次数最多的,故众数是1;
故答案为1.
23、a⩽3.
【解析】
根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.
【详解】
∵在实数范围内有意义,
∴3−a⩾0,
解得a⩽3.
故答案为:a⩽3.
此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.
二、解答题(本大题共3个小题,共30分)
24、(1)AG=CE.,理由见解析;(2)+1;;(3)AG=CE仍然成立,理由见解析;
【解析】
(1)根据正方形的性质可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证;
(2)利用角平分线的性质以及正方形的性质得出MC=MG,进而利用勾股定理得出GC的长,即可得出AB的长;
(3)先求出∠ABG=∠CBE,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证.
【详解】
(1)AG=CE.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,
在△ABG和△CBE中,
∵ ,
∴△ABG≌△CBE(SAS),
∴AG=CE;
(2)过点G作GM⊥AC于点M,
∵AG恰平分∠BAC,MG⊥AC,GB⊥AB,
∴BG=MG,
∵BE=1,
∴MG=BG=1,
∵AC平分∠DCB,
∴∠BCM=45°,
∴MC=MG=1,
∴GC= ,
∴AB的长为:AB=BC=+1;
(3)AG=CE仍然成立.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,
∵∠ABG=∠ABC−∠CBG,
∠CBE=∠EBG−∠CBG,
∴∠ABG=∠CBE,
在△ABG和△CBE中,
∵ ,
∴△ABG≌△CBE(SAS),
∴AG=CE.
此题考查几何变换综合题,解题关键在于证明△ABG和△CBE全等.
25、(1)
(2)九(1)班成绩好些;
(3)九(1)班五名选手的成绩较稳定.
【解析】
(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)在平均数相同的情况下,中位数高的成绩较好;
(3)根据方差公式计算即可:(可简单记忆为“等于差方的平均数”).
【详解】
解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,
∴九(1)的中位数为85,
把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,
∴九(2)的平均数为(70+75+80+100+100)÷5=85,
九(2)班的众数是100;
(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.
(3)[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,
[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=1.
∵,
∴九(1)班五名选手的成绩较稳定.
本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.
26、(1);(2)或
【解析】
(1)根据,,分别求出A、B的坐标,再将这两点坐标代入,即可求出AB的解析式;
(2)以OB为底(因为OB刚好与y轴重合),则P点到y轴的距离即为高,根据的面积是4,计算出高的长度,即可得到P点的横坐标(有两个),代入AB的解析式即可求出P点的坐标.
【详解】
解:(1)∵,,∴
∴,,
由题意,得,解得
∴直线的解析式是
(2)
设,过点作轴于点,则
∵,即,解得:
当时,;当时,.
∴或.
本题考查一次函数的综合应用,(1)中能根据点与坐标系的特征,得出A、B两点的坐标是解题的关键;(2)中在坐标系中计算三角形的面积时,常以垂直x轴或y轴的边作为三角形的底进行计算比较简单.
题号
一
二
三
四
五
总分
得分
批阅人
平均成绩(环)
中位数(环)
众数(环)
方差()
甲
7
7
1. 2
乙
7. 5
4. 2
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
九(2)
80
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
85
九(2)
85
80
100
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
85
九(2)
85
80
100
相关试卷
这是一份2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省宜兴市桃溪中学九上数学开学质量跟踪监视模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省深圳市文锦中学数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。