![2024-2025学年新疆生产建设兵团第二师二十五团中学九年级数学第一学期开学检测模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16193127/0-1727313473075/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年新疆生产建设兵团第二师二十五团中学九年级数学第一学期开学检测模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16193127/0-1727313473124/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年新疆生产建设兵团第二师二十五团中学九年级数学第一学期开学检测模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16193127/0-1727313473151/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年新疆生产建设兵团第二师二十五团中学九年级数学第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设( )
A.有一个内角小于60°B.每一个内角都小于60°
C.有一个内角大于60°D.每一个内角都大于60°
2、(4分)下列多项式能用完全平方公式分解因式的是( ).
A.a2-ab+b2B.x2+4x – 4C.x2-4x+4D.x2-4x+2
3、(4分)如图,第一个图形中有4个“”,第二个图形中有7个“”,第三个图形中有11个“”,按照此规律下去,第8个图形中“”的个数为( ).
A.37B.46C.56D.67
4、(4分)如图,已知直线11:y=﹣x+4与直线l2:y=3x+b相交于点P,点P的横坐标是2,则不等式﹣x+4≤3x+b的解集是( )
A.x<2B.x>2C.x≤2D.x≥2
5、(4分)到△ABC的三条边距离相等的点是△ABC的( ).
A.三条中线的交点B.三条边的垂直平分线的交点
C.三条高的交点D.三条角平分线的交点
6、(4分)为了了解某地八年级男生的身高情况,从当地某学校选取了60名男生统计身高情况,60名男生的身高(单位:cm)分组情况如下表所示,则表中a,b的值分别为( )
A.18,6B.0.3,6
C.18,0.1D.0.3,0.1
7、(4分)已知y与x成正比例,并且时,,那么y与x之间的函数关系式为( )
A.B.C.D.
8、(4分)已知点A(0,0),B(0,4),C(3,t+4),D(3,t). 记N(t)为ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为
A.6、7B.7、8C.6、7、8D.6、8、9
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)己知关于的分式方程有一个增根,则_____________.
10、(4分)在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.
11、(4分)点A(-2,3)关于x轴对称的点B的坐标是_____
12、(4分)如图,在平面直角坐标系中,ΔABC绕点D旋转得到ΔA’B’C’,则点D的坐标为____.
13、(4分)先化简:,再对a选一个你喜欢的值代入,求代数式的值.
三、解答题(本大题共5个小题,共48分)
14、(12分)一个二次函数的图象经过三点.求这个二次函数的解析式并写出图象的开口方向、对称轴和顶点.
15、(8分)如图,中,的平分线交于点,的垂直平分线分别交、、于点、、,连接、.
(1)求证:四边形是菱形;
(2)若,,,试求的长.
16、(8分)解不等式:
17、(10分)工艺商场以每件元购进一批工艺品.若按每件元销售,工艺商场每天可售出该工艺品件.若每件工艺品降价元,则每天可多售出工艺品件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
18、(10分)(1)化简求值:,其中.
(2)解不等式组:,并把它的解集在数轴上表示出来.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,则m-n的值为_____.
20、(4分)如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,__.
21、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
22、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.
23、(4分)一组数据5、7、7、x中位数与平均数相等,则x的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:
(1)A、B两地的距离是__________km;
(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;
(3)请直接写出甲、乙两车何时相聚15km。
25、(10分)如图,已知 BC∥EF,BC=EF,AF=DC.试证明:AB=DE.
26、(12分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.
(1)求路灯A的高度;
(2)当王华再向前走2米,到达F处时,他的影长是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据反证法的第一步是假设结论不成立矩形解答即可.
【详解】
解:用反证法证明“三角形中至少有一个内角大于或等于”时,
第一步应先假设每一个内角都小于,
故选:.
本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
2、C
【解析】
能用完全平方公式分解因式的式子的特点是:有三项;两项平方项的符号必须相同;有两数乘积的2倍.
【详解】
A、a2-ab+b2不符合能用完全平方公式分解因式的式子的特点;
B、x2+4x-4不符合能用完全平方公式分解因式的式子的特点;
C、x2-4x+4能用完全平方公式分解因式;
D、x2-4x+2不符合能用完全平方公式分解因式的式子的特点.
故选C.
本题考查利用完全平方公式分解因式,熟记公式结构是解题的关键.
3、B
【解析】
设第n个图形有an个“•”(n为正整数),观察图形,根据给定图形中“•”个数的变化可找出变化规律“an=+1(n为正整数)”,再代入n=8即可得出结论.
【详解】
设第n个图形有an个“•”(n为正整数).
观察图形,可知:a1=1+2+1=4,a2=1+2+3+1=7,a3=1+2+3+4+1=11,a4=1+2+3+4+5+1=16,…,
∴an=1+2+…+n+(n+1)+1=+1(n为正整数),
∴a8=+1=1.
故选:B.
考查了规律型:图形的变化类,根据各图形中“•”个数的变化找出变化规律“an=+1(n为正整数)”是解题的关键.
4、D
【解析】
利用函数图象,写出直线l1不在直线l1上方所对应的自变量的范围即可.
【详解】
解:如图:
当x≥1时,﹣x+4≤3x+b,
所以不等式﹣x+4≤3x+b的解集为x≥1.
故选:D.
此题考查不等式与一次函数的关系,数形结合即可求解.
5、D
【解析】
根据角平分线的性质求解即可.
【详解】
到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点
故答案为:D.
本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.
6、C
【解析】
解:因为a=61×1.3=18,
所以第四组的人数是:61﹣11﹣26﹣18=6,
所以b==1.1,
故选C.
本题考查频数(率)分布表.
7、A
【解析】
根据y与x成正比例,可设,用待定系数法求出k值.
【详解】
解:设,将,,代入得:
解得:k=8,所以y与x之间的函数关系式为.
故答案为:A
本题考查了正比例函数的解析式,根据正比例函数的定义设出其表达式是解题的关键.
8、C
【解析】
分析:应用特殊元素法求解:
当t=0时,ABCD的四个项点是A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;
当t=1时,ABCD的四个项点是A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;
当t=2时,ABCD的四个项点是A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;
故选项A,选项B,选项D错误,选项C正确。
故选C。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
方程两边都乘(x−3),得
x−2(x−3)=k+1,
∵原方程有增根,
∴最简公分母x−3=0,即增根是x=3,
把x=3代入整式方程,得k=2.
本题主要考查了分式方程的增根,熟悉掌握步骤是关键.
10、6.5
【解析】
试题分析:依题意作图可知EF为Rt△ABC中位线,则EF=AB.在Rt△ABC中AB=
所以EF=6.5
考点:中位线定理
点评:本题难度较低,主要考查学生对三角形中位线定理知识点的掌握.
11、(-2,-3).
【解析】
根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.
解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).
故答案为(-2,-3).
12、(3,0)
【解析】
连接AA′,BB′,分别作AA′,BB′的垂直平分线,两垂直平分线的交点即是旋转中心,然后写出坐标即可.
【详解】
连接旋转前后的对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线相交的地方就是旋转中心.
所以,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.
13、;3
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值.
【详解】
原式.
∵且
∴当a=3时,原式=
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、,图象开口向上,对称轴直线,顶点.
【解析】
首先根据待定系数法求解二次函数的解析式,再根据二次函数的系数确定抛物线的开口方向,对称轴,和公式法计算顶点坐标.
【详解】
设二次函数的解析式为.
由已知,函数的图象经过三点,可得
解这个方程组,得,,.
所求二次函数的解析式为,
图象开口向上,对称轴直线,顶点.
本题主要考查二次函数抛物线解析式的计算、抛物线的性质,这是考试的必考点,必须熟练掌握.
15、(1)证明见解析;(2).
【解析】
(1)先根据垂直平分线的性质得:,,证明得,再由四边都相等的四边形是菱形可得结论;
(2)作辅助线,构建直角三角形,根据直角三角形的性质可得,由勾股定理得:,由,可得是等腰直角三角形,从而可得,由此即可解题.
【详解】
(1)证明:是的垂直平分线,即,,
,,
平分,
,
在和中,
,
,
,
∴
四边形是菱形;
(2)解:过作于,则,
,
,
,
在中,,
四边形是菱形,
,
,
是等腰直角三角形,
,
.
本题考查了菱形的判定和性质、三角形全等的性质和判定、等腰直角三角形的判定和性质以及直角三角形角的性质,熟练掌握菱形的判定是解(1)题的关键,构造直角三角形求线段长是解(2)题的关键.
16、.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
,
,
,
.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
17、10,4900
【解析】
设每件工艺品降价x元出售,每天获得的利润为y元,根据题意列出方程,再根据二次函数最值的性质求解即可.
【详解】
设每件工艺品降价x元出售,每天获得的利润为y元,由题意得
∴当时,y有最大值,最大值为4900
故每件工艺品降价10元出售,每天获得的利润最大,获得的最大利润是4900元.
本题考查了二次函数的实际应用,掌握二次函数的最值是解题的关键.
18、(1),原式;(2).把它的解集在数轴上表示出来见解析.
【解析】
(1)首先计算括号里面同分母的分式减法,然后除以括号外面的分式时,要乘以它的倒数,然后进行约分化简,代入求值;
(2)分别解两个不等式,得到不等式组的解集,然后在数轴上表示解集即可.
【详解】
解:(1),
把代入得:原式;
(2),
由①得,
由②得,
∴原不等式组的解集是.
在数轴上表示解集如下:
解题关键:
(1)化简过程中运用到分式的通分,找准最简公分母是关键;还运用到分式的约分,利用乘法公式把分式的分子分母因式分解之后进行约分;
(2)熟练掌握不等式的解法,在数轴上表示解集时,一定注意是空心点还是实心点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
根据二次根式与平方的非负性即可求解.
【详解】
依题意得m-3=0,n+1=0,解得m=3,n=-1,
∴m-n=4
此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.
20、或1
【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示,
连结AC,
在Rt△ABC中,AB=1,BC=12,
∴AC==13,
∵将ΔABE沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:,则,,
,
由勾股定理得:,
解得:;
②当点B′落在AD边上时,如图2所示,
此时ABEB′为正方形,∴BE=AB=1,
综上所述,BE的长为或1,
故答案为:或1.
本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.
21、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22、
【解析】
设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.
【详解】
解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,
根据题意得.
故答案为.
本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.
23、5或2
【解析】
试题分析:根据平均数与中位数的定义就可以解决.中位数可能是7或1.
解:当x≥7时,中位数与平均数相等,则得到:(7+7+5+x)=7,解得x=2;
当x≤5时:(7+7+5+x)=1,解得:x=5;
当5<x<7时:(7+7+x+5)÷4=(x+7)÷2,解得x=5,舍去.
所以x的值为5或2.
故填5或2.
考点:中位数;算术平均数.
二、解答题(本大题共3个小题,共30分)
24、(1)180;(2);(3)甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km
【解析】
(1)根据图象解答即可;(2) 根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;(3) 根据题意,利用分类讨论的数学思想可以求得x的值.
【详解】
解:
(1)观察图象可得:A、B两地的距离是180km;
(2)由题意得,甲车的平均速度为:180÷(3-1)=90
所以当x=1时,y=90
当x=2时,y=90
当2≤x≤3时,设(k≠0)
点(2,90),(3,180)在直线上
因此有
解得:
∴
∴甲车休息后离A地的距离为y(km)与x(h)之间的函数关系为:
(3) 设乙车行驶过程中y与x之间的函数关系式是y=ax,
180=3a,得a=60,
∴乙车行驶过程中y与x之间的函数关系式是y=60x,
∴60x=90,得x=1.5,即两车1.5小时相遇,
当0≤x≤1.5时,甲车行驶过程中y与x之间的函数关系式是y=90x,90=x,
∴90x-60x=15,得x=,
90-60x=15时,x=1.25,
当1.5≤x≤3时,甲车行驶过程中y与x之间的函数关系式是y=9x-90,
90=x,
∴60x-90=1.5,得x=1.75;
60x-(90x-90)=15,得x=2.5
由上可得,甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km。
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.
25、证明见解析
【解析】
首先根据平行线的性质可得∠BCA=∠EFD,再根据AF=DC可得AC=DF,然后可以证明△ABC≌△DEF,再根据全等三角形的性质可得AB=DE.
【详解】
∵BC∥EF (已知),∴∠BCA=∠EFD( 两直线平行,内错角相等)
∵AF=DC(已知),∴AF+FC=DC+FC,即 AC=DF.
在△ABC和△DEF中,∵,∴△ABC≌△DEF( SAS),∴AB=DE( 全等三角形的对应边相等).
全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS、ASA、SAS、AAS.
26、(1)路灯A有6米高(2)王华的影子长米.
【解析】
试题分析:22. 解:(1)由题可知AB//MC//NE,
∴,而MC=NE
∴
∵CD=1米,EF=2米,BF=BD+4,∴BD=4米,∴AB==6米
所以路灯A有6米高
(2) 依题意,设影长为x,则解得米
答:王华的影子长米.
考点:相似三角形性质
点评:本题难度较低,主要考查学生对相似三角形性质解决实际生活问题的能力.为中考常考题型,要求学生牢固掌握解题技巧.
题号
一
二
三
四
五
总分
得分
分组
147.5~157.5
157.5~167.5
167.5~177.5
177.5~187.5
频数
10
26
a
频率
0.3
b
2024-2025学年新疆生产建设兵团农八师一四三团第一中学数学九年级第一学期开学考试试题【含答案】: 这是一份2024-2025学年新疆生产建设兵团农八师一四三团第一中学数学九年级第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年新疆生产建设兵团27团中学九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年新疆生产建设兵团27团中学九年级数学第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
新疆生产建设兵团第二师二十五团中学2023-2024学年数学九年级第一学期期末达标测试试题含答案: 这是一份新疆生产建设兵团第二师二十五团中学2023-2024学年数学九年级第一学期期末达标测试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,对于方程,下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。