2024-2025学年山东省德州市陵城区数学九年级第一学期开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数不变,方差不变B.平均数不变,方差变大
C.平均数不变,方差变小D.平均数变小,方差不变
2、(4分)如图,在平行四边形中,∠A=40°,则∠B的度数为( )
A.100°B.120°C.140°D.160°
3、(4分)学校测量了全校800名男生的身高,并进行了分组,已知身高在1.70~1.75(单位:m)这一组的频率为0.25,则该组共有男生( )
A.100名B.200名C.250名D.400名
4、(4分)若点P在一次函数的图像上,则点P一定不在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)如图的图形中只能用其中一部分平移可以得到的是( )
A.B.
C.D.
6、(4分)已知一个直角三角形的两边长分别为3和5,则第三边长为 ( )
A.4B.4或34C.16或34D.4或
7、(4分)已知,矩形OABC按如图所示的方式建立在平面直角坐标系总,AB=4,BC=2,则点B的坐标为( )
A.(4,2)B.(﹣2,4)C.(4,﹣2)D.(﹣4,2)
8、(4分)如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为( )
A.8 cmB.16 cmC. cmD.32 cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________.
10、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________
11、(4分)如图,延长正方形的边到,使,则________度.
12、(4分)如图,已知:,点、、在射线上,点、、...在射线上,、、...均为等边三角形,若,则的边长为__________.
13、(4分)因式分解的结果是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,分别平分和,交于点,线段相交于点M.
(1)求证:;
(2)若,则的值是__________.
15、(8分)阅读材料,回答问题:
材料:将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“”分法、“”分法、“”分法及“”分法等.
如“”分法:
请你仿照以上方法,探索并解决下列问题:
分解因式:(1);
(2).
16、(8分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
17、(10分)中, 分别是 上的不动点.且 ,点 是 上的一动点.
(1)当 时(如图1),求 的度数;
(2)若 时(如图2),求 的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.
18、(10分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.
(1)求证:△BFO≌△DEO;
(2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;
(3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把抛物线沿轴向上平移1个单位,得到的抛物线解析式为______.
20、(4分)数据5,5,6,6,6,7,7的众数为_____
21、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
22、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.
23、(4分)如图,△ABC 中,AB=BC=12cm,D、E、F 分别是 BC、AC、AB 边上的中点,则四边形 BDEF 的周长是__________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)武胜县白坪—飞龙乡村旅游度假村橙海阳光景点组织辆汽车装运完三种脐橙共吨到外地销售.按计划,辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;
如果装运每种脐橙的车辆数都不少于辆,那么车辆的安排方案有几种?
设销售利润为(元),求与之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
25、(10分)解不等式(组),并把解集在数轴上表示出来
(1)
(2)
26、(12分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解: =(160+165+170+163+1)÷5=165,S2原=, =(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.
2、C
【解析】
根据平行四边形的性质,即可得出答案.
【详解】
∵平行四边形ABCD,
∴AD∥BC,
∴∠A+∠B=180°,
∵∠A=40°,
∴∠B=180°-40°=140°,
故选C.
此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
3、B
【解析】
根据频数=总数×频率,直接代值计算即可.
【详解】
解:根据题意,得
该组共有男生为:800×0.25=200(人).
故选:B.
此题考查频率、频数的关系:频率=。能够灵活运用公式是解题的关键.
4、C
【解析】
根据一次函数的性质进行判定即可.
【详解】
一次函数y=-x+4中k=-1<0,b>0,
所以一次函数y=-x+4的图象经过二、一、四象限,
又点P在一次函数y=-x+4的图象上,
所以点P一定不在第三象限,
故选C.
本题考查了一次函数的图象和性质,熟练掌握是解题的关键.
y=kx+b:当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.
5、B
【解析】
根据平移的性质,对选项进行一一分析,排除错误答案 .
【详解】
、图形为轴对称所得到,不属于平移;
、图形的形状和大小没有变化,符合平移性质,是平移;
、图形为旋转所得到,不属于平移;
、最后一个图形形状不同,不属于平移 .
故选.
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错 .
6、D
【解析】
解:∵个直角三角形的两边长分别为3和5,
∴①当5是此直角三角形的斜边时,设另一直角边为x,则x=;
②当5是此直角三角形的直角边时,设另一直角边为x,则x=.
故选D.
7、C
【解析】
直接利用矩形的性质结合点B所在象限得出点B坐标即可
【详解】
解:∵矩形OABC中,AB=4,BC=2,
∴点B的坐标为:(4,﹣2).
故选C.
此题主要考查矩形的性质,以及坐标系中点坐标的表示
8、D
【解析】
根据菱形的性质可知AO=OC,继而根据中位线定理求得BC长,再根据菱形的四条边相等即可求得答案.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AO=OC,
∵AE=BE,
∴BC=2EO=2×4cm=8cm,
即AB=BC=CD=AD=8cm,
即菱形ABCD的周长为32cm,
故选D.
本题考查了菱形的性质,三角形中位线定理,熟练掌握相关性质与定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.2
【解析】
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
∴AM的最小值是1.2.
10、-1
【解析】
试题解析:∵根据正比例函数的定义,
可得:k-1≠0,|k|=1,
∴k=-1.
11、22.5
【解析】
连接BD,根据等边对等角及正方形的性质即可求得∠E的度数.
【详解】
连接BD,如图所示:
则BD=AC
∵BE=AC
∴BE=BD
∴∠E=(180°-90°-45)°=22.5°.
故答案是:.
考查到正方形对角线相等的性质.
12、
【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…进而得出答案
【详解】
解:如图
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案为:32a.
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
13、
【解析】
先提取公因式6x2即可.
【详解】
=.
故答案为:.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
三、解答题(本大题共5个小题,共48分)
14、(1)略;(2);
【解析】
(1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
(2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
【详解】
(1)证明:∵在平行四边形ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°,
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF,
∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
∴∠AMB=10°,
∴AE⊥BF;
(2)解:∵在平行四边形ABCD中,CD∥AB,
∴∠DEA=∠EAB,
又∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DEA=∠DAE,
∴DE=AD,同理可得,CF=BC,
又∵在平行四边形ABCD中,AD=BC,
∴DE=CF,
∴DF=CE,
∵EF=AD,
∴BC=AD=5EF,
∴DE=5EF,
∴DF=CE=4EF,
∴AB=CD=1EF,
∴BC:AB=5:1;
故答案为5:1.
本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
15、(1);(2)
【解析】
(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;
(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可.
【详解】
解:(1)
.
(2)
.
本题考查的是分组分解法因式分解,掌握分组分解法、公式法的一般步骤是解题的关键.
16、2.
【解析】
根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
【详解】
解:
原式
=2
本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
17、(1);(2)相同,.
【解析】
(1)根据等腰三角形的性质和三角形的内角和即可得到结论;
(2)根据全等三角形的判定和性质和三角形的内角和即可得到结论.
【详解】
(1)
(2)相同,理由是:
又
本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练正确全等三角形的判定和性质是解题的关键.
18、(1)详见解析;
(2)四边形AFCE是矩形,证明见解析;
(3)四边形AFCE是正方形.
【解析】
(1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;
(2)由全等三角形的性质得出BF=DE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.
(3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,从而得∠CEF=∠CFE,继而知CE=CF,据此可得答案.
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴OB=OD,AD∥BC,AD=BC,
∴∠OBF=∠ODE,
在△BFO和△DEO中,
∵ ,
∴△BFO≌△DEO(ASA);
(2)四边形AFCE是矩形;理由如下:
∵△BFO≌△DEO,
∴BF=DE,
∴CF=AE,
∵AD∥BC,
∴四边形AFCE是平行四边形;
又∵AF⊥BC,
∴∠AFC=90°,
∴四边形AFCE是矩形;
(3)∵EF平分∠AEC,
∴∠AEF=∠CEF,
∵AD∥BC,
∴∠AEF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
∴四边形AFCE是正方形.
本题考查了四边形的综合问题,主要考查平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
抛物线图像向上平移一个单位,即纵坐标减1,然后整理即可完成解答.
【详解】
解:由题意得:,即
本题主要考查了函数图像的平移规律,即 “左右横,上下纵,正减负加”的理解和应用是解题的关键.
20、6
【解析】
根据众数的定义可得结论.
【详解】
解:数据5,5,6,6,6,7,7,其中数字5出现2次,数字6出现3次,数字7出现2次,所以众数为6.
故答案为:6
本题主要考查众数的定义,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.
21、2.1
【解析】
连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接.
,,,
,
,,,
四边形是矩形,
,
由垂线段最短可得时,线段的值最小,
此时,,
即,
解得.
故答案为:2.1.
本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键,难点在于利用三角形的面积列出方程.
22、x <-2
【解析】
【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.
【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.
所以,的解集为x<-2.
故答案为x<-2
【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.
23、24
【解析】
根据中点的性质求出BF、BD,根据中位线的性质求出DE、FE,从而求出四边形BDEF的周长.
【详解】
∵D、E、F 分别是 BC、AC、AB 边上的中点,
∴,
,,
∵AB=BC=12cm
∴BF=DE=BD=BF=6cm
∴四边形BDEF的周长为24cm.
本题考查线段的中点、三角形中位线定理.解决本题的关键是利用三角形的中位线平行于第三边并且等于第三边的一半求出DE和FE.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)5种;(3)装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
【解析】
(1)利用“车辆数之和=20”这个等量关系进行列式即可;
(2)关系式为:装运每种脐橙的车辆数≥4;
(3)总利润为:装运A种脐橙的车辆数×6×1200+装运B种脐橙的车辆数×5×1600+装运C种脐橙的车辆数×4×1000,然后按x的取值来判定.
【详解】
解:(1)根据题意,装运种脐橙的车辆数为,装运种脐橙的车辆数为,那么装运种脐橙的车辆数为,
则有:,即:
(2)由知,装运三种脐橙的车辆数分别为
由题意得:
解得,
因为为整数,
所以的值为,所以安排方案共有种.
(3)
的值随的增大而减小
要使利润最大,则,
故选方案为:装运种脐橙车,种脐橙车,种脐橙车.
(元)
答:当装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
故答案为:(1);(2)5种;(3)装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.
25、(1)x>﹣5,数轴见解析;(2)﹣2<x≤3,数轴见解析.
【解析】
(1)去分母;去括号;移项;合并同类项;化系数为1;再把不等式的解集表示在数轴上;依此即可求解.
(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
【详解】
(1),
去分母得:3(x+1)>2(x﹣1),
去括号得:3x+3>2x﹣2,
系数化为1得:x>﹣5,
数轴如图所示:
(2),
解不等式①得:x>﹣2,
解不等式②得:x≤3,
∴不等式组的解集是﹣2<x≤3,
在数轴上表示不等式组的解集为:
本题考查解一元一次不等式及一元一次不等式组,解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.
26、小明至少答对18道题才能获得奖品.
【解析】
试题分析:设小明答对x道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可.
试题解析:
设小明答对x道题,根据题意得,
6x-2(25-x)>90
解这个不等式得,,
∵x为非负整数
∴x至少为18
答:小明至少答对18道题才能获得奖品.
考点:一元一次不等式的应用.
题号
一
二
三
四
五
总分
得分
批阅人
脐橙品种
每辆汽车运载量(吨)
每吨脐橙获得(元)
2024-2025学年江苏省泰州海陵学校数学九年级第一学期开学复习检测试题【含答案】: 这是一份2024-2025学年江苏省泰州海陵学校数学九年级第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省漯河市召陵区九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年河南省漯河市召陵区九年级数学第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省德州市陵城区2023-2024学年九年级上学期期末数学试题(含答案): 这是一份山东省德州市陵城区2023-2024学年九年级上学期期末数学试题(含答案),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。