|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年江苏省盱眙县九年级数学第一学期开学综合测试模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省盱眙县九年级数学第一学期开学综合测试模拟试题【含答案】01
    2024-2025学年江苏省盱眙县九年级数学第一学期开学综合测试模拟试题【含答案】02
    2024-2025学年江苏省盱眙县九年级数学第一学期开学综合测试模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省盱眙县九年级数学第一学期开学综合测试模拟试题【含答案】

    展开
    这是一份2024-2025学年江苏省盱眙县九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)介于两个相邻整数之间,这两个整数是( )
    A.2和3B.3和4C.4和5D.5和6
    2、(4分)以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=x﹣2与边AB、BC分别交于点E、F,若AB=10,BC=3,则△EBF的面积是( )
    A.4B.5C.6D.7
    3、(4分)计算的的结果是( )
    A.B.C.4D.16
    4、(4分)若在实数范围内有意义,则a的取值范围是( )
    A.a≥B.a≤C.a>D.a<
    5、(4分)已知(a≠0,b≠0),下列变形错误的是( )
    A.B.2a=3bC.D.3a=2b
    6、(4分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )
    A.①③B.②③C.①④D.②④
    7、(4分)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )
    A.4B.5C.D.6
    8、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )
    A.16B.8C.D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.
    10、(4分)计算:_______,化简__________.
    11、(4分)如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=8,则OB的长为 ________。
    12、(4分)八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).
    13、(4分)如图,在四边形中, 是边的中点,连接并延长,交的延长线与点, ,请你添加一个条件(不需要添加任何线段或字母),使之能推出四边形为平行四边形,你添加的条件是_________,并给予证明.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
    (1)直接写出直线L的解析式;
    (2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
    (3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
    15、(8分)如图,在平面直角坐标系中,直线分别交两轴于点,点的横坐标为4,点在线段上,且.
    (1)求点的坐标;
    (2)求直线的解析式;
    (3)在平面内是否存在这样的点,使以为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,不必说明理由.
    16、(8分)在平面直角坐标系xOy中,直线过A(0,—3),B(1,2).求直线的表达式.
    17、(10分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
    (1)求证:△ABF≌△ECF;
    (2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.
    18、(10分)甲乙两家商场以同样价格销售相同的商品,在同一促销期间两家商场都让利酬宾.甲商场所有商品都按原价的八折出售,乙商场只对一次购物中超过100元后的价格部分按原价的七折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x元,让利后的购物金额为y元
    (1)分别就甲乙两家商场写出y与x的函数关系式.
    (2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
    20、(4分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.
    21、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.
    22、(4分)如图, ,分别平分与,,,则与之间的距离是__________.

    23、(4分)若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,AD是△ABC的中线,E为AD的中点,过点A作AF∥BC交BE延长线于点F,连接CF.
    (1)如图1,求证:四边形ADCF是平行四边形;
    (2)如图2,连接CE,在不添加任何辅助线的情况下,请直接写出图2中所有与△BDE面积相等的三角形.
    25、(10分)(1)计算
    (2)解方程
    26、(12分)如图,已知△ABC三个顶点的坐标分别为A(-2,-1),B(-3,-3),C(-1,-3).
    (1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
    (2)若△A2B2C2是由△ABC平移而得,且点A2的坐标为(-4,4),请写出B2和C2的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据无理数的估算得出的大小范围,即可得答案.
    【详解】
    ∵9<15<16,
    ∴3<<4,
    故选B.
    本题考查的是估算无理数的大小,根据题意估算出的大小范围是解答此题的关键.
    2、A
    【解析】
    根据题意得:B(2,﹣),可得E的纵坐标为﹣,F的横坐标为2.代入解析式y=x﹣2可求E,F坐标.则可求△EBF的面积.
    【详解】
    解:∵x轴过BC中点,y轴过CD中点,AB=20,BC=3
    ∴B(2,﹣)
    ∴E的纵坐标为﹣,F的横坐标为2.
    ∵y=x﹣2与边AB、BC分别交于点E、F.
    ∴当x=2时,y=.
    当y=﹣时,x=2.
    ∴E(2,﹣),F(2,)
    ∴BE=4,BF=2
    ∴S△BEF=BE×BF=4
    故选A.
    本题考查了一次函数图象上点的坐标特征,矩形的性质,关键是找到E,F两点坐标.
    3、C
    【解析】
    根据算术平方根和平方根进行计算即可
    【详解】
    =4
    故选:C
    此题考查算术平方根和平方根,掌握运算法则是解题关键
    4、A
    【解析】
    直接利用二次根式有意义则2a+3≥0,进而得出答案.
    【详解】
    解:在实数范围内有意义,则2a+3≥0,
    解得:.
    故选:A.
    此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
    5、B
    【解析】
    根据两内项之积等于两外项之积对各选项分析判断即可得解.
    【详解】
    解:由得,3a=2b,
    A、由等式性质可得:3a=2b,正确;
    B、由等式性质可得2a=3b,错误;
    C、由等式性质可得:3a=2b,正确;
    D、由等式性质可得:3a=2b,正确;
    故选B.
    本题考查了比例的性质,主要利用了两内项之积等于两外项之积.
    6、C
    【解析】
    垂直于弦的直径平分弦,所以①正确;
    平分弦(非直径)的直径垂直于弦,所以②错误;
    在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;
    在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.
    故选C.
    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    7、B
    【解析】
    取CE的中点G,连接FG.依据旋转的性质CE=BC=4,CD=AC=6,则AE=2,由G是CE的中点可求得AG=4,然后利用三角形的中位线定理可得到FG=3,最后在Rt△AFG中依据勾股定理求解即可.
    【详解】
    过点作于点.由图形旋转的性质可知,,,所以.因为,且,所以.又因为点为中点,所以为的中位线,点为中点,则,,故.在中,.
    故选B.
    8、A
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
    【详解】
    解:∵E、F分别是AB、AC的中点,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×2=4,
    ∴菱形ABCD的周长=4BC=4×4=1.
    故选A.
    本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、50
    【解析】
    根据频数与频率的数量关系即可求出答案.
    【详解】
    解:设被调查的学生人数为x,
    ∴,
    ∴x=50,
    经检验x=50是原方程的解,
    故答案为:50
    本题考查频数与频率,解题的关键是正确理解频数与频率的关系,本题属于基础题型.
    10、
    【解析】
    先对通分,再化简计算得到答案;根据二次根式对进行化简,再去括号计算,即可得到答案.
    【详解】
    =
    =
    =
    =
    =
    =
    =
    =
    本题考查分式的减法计算、二次根式的加减混合运算,解题的关键是掌握分式的减法计算、二次根式的加减混合运算.
    11、5
    【解析】
    根据矩形的性质求出∠D=90°,OA=OB,AD=BC=8,求出AM,根据勾股定理求出OA即可.
    【详解】
    ∵四边形ABCD为矩形,点M为AD的中点
    ∴点O为AC的中点,BC=AD=8,AC=BD
    ∴MO为三角形ACD的中位线
    ∴MO=CD,即CD=6
    ∴在直角三角形ACD中,由勾股定理得,AC==10。
    ∴OB=BD=AC=5.
    本题考查了矩形的性质、勾股定理、三角形的中位线等知识点,能熟记矩形的性质是解此题的关键,注意:矩形的对边相等,矩形的对角线互相平分且相等,矩形的每个角都是直角.
    12、随机
    【解析】
    根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件. 可能事件是指在一定条件下,一定不发生的事件. 不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答
    【详解】
    从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件
    此题考查随机事件,难度不大
    13、添加的条件是:∠F=∠CDE
    【解析】
    由题目的已知条件可知添加∠F=∠CDE,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB,进而证明四边形ABCD为平行四边形.
    【详解】
    条件是:∠F=∠CDE,
    理由如下:
    ∵∠F=∠CDE
    ∴CD∥AF
    在△DEC与△FEB中,

    ∴△DEC≌△FEB
    ∴DC=BF,∠C=∠EBF
    ∴AB∥DC
    ∵AB=BF
    ∴DC=AB
    ∴四边形ABCD为平行四边形
    故答案为:∠F=∠CDE.
    本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=1﹣x;(2),S有最大值;(3)存在点C(1,1).
    【解析】
    (1)已知直线L过A,B两点,可将两点的坐标代入直线的解析式中,用待定系数法求出直线L的解析式;
    (2)求三角形OPQ的面积,就需知道底边OP和高QM的长,已知了OP为t,关键是求出QM的长.已知了QM垂直平分OP,那么OM=t,然后要分情况讨论:①当OM<OB时,即0<t<2时,BM=OB﹣OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根据三角形的面积公式得出S与t的函数关系式;②当OM>OB时,即当t≥2时,BM=OM﹣OB,然后根据①的方法即可得出S与t的函数关系式,然后可根据0<t<2时的函数的性质求出S的最大值;
    (3)如果存在这样的点C,那么CQ=QP=OQ,因此C,O就关于直线BL对称,因此C的坐标应该是(1,1).那么只需证明CQ⊥PQ即可.分三种情况进行讨论:①当Q在线段AB上(Q,B不重合),且P在线段OB上时.要证∠CQP=90°,那么在四边形CQPB中,就需先证出∠QCB与∠QPB互补,由于∠QPB与∠QPO互补,而∠QPO=∠QOP,因此只需证∠QCB=∠QOB即可,根据折叠的性质,这两个角相等,由此可得证;②当Q在线段AB上,P在OB的延长线上时,根据①已得出∠QPB=∠QCB,那么这两个角都加上一个相等的对顶角后即可得出∠CQP=∠CBP=90度;③当Q与B重合时,很显然,三角形CQP应该是个等腰直角三角形.综上所述即可得出符合条件C点的坐标.
    【详解】
    (1)y=1﹣x;
    (2)∵OP=t,
    ∴Q点的横坐标为t,
    ①当,即0<t<2时,QM=1-t,
    ∴S△OPQ=t(1﹣t),
    ②当t≥2时,QM=|1﹣t|=t﹣1,
    ∴S△OPQ=t(t﹣1),

    当0<t<1,即0<t<2时,S=t(1﹣t)=﹣(t﹣1)2+,
    ∴当t=1时,S有最大值;
    (3)由OA=OB=1,故△OAB是等腰直角三角形,
    若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,
    则PQ=QC,
    所以OQ=QC,又L1∥x轴,则C,O两点关于直线L对称,
    所以AC=OA=1,得C(1,1).下面证∠PQC=90度.连CB,则四边形OACB是正方形.
    ①当点P在线段OB上,Q在线段AB上(Q与B、C不重合)时,如图﹣1,
    由对称性,得∠BCQ=∠QOP,∠QPO=∠QOP,
    ∴∠QPB+∠QCB=∠QPB+∠QPO=180°,
    ∴∠PQC=360°﹣(∠QPB+∠QCB+∠PBC)=90度;
    ②当点P在线段OB的延长线上,Q在线段AB上时,如图﹣2,如图﹣3
    ∵∠QPB=∠QCB,∠1=∠2,
    ∴∠PQC=∠PBC=90度;
    ③当点Q与点B重合时,显然∠PQC=90度,
    综合①②③,∠PQC=90度,
    ∴在L1上存在点C(1,1),使得△CPQ是以Q为直角顶点的等腰直角三角形.
    本题结合了三角形的相关知识考查了一次函数及二次函数的应用,要注意的是(2)中为保证线段的长度不为负数要分情况进行求解.(3)中由于Q,P点的位置不确定,因此要分类进行讨论不要漏解.
    15、(1)点;(2);(3)点的坐标是,,.
    【解析】
    (1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点在线段上,且,即可求出点D的坐标;
    (2)利用待定系数法可求直线CD的解析式;
    (3)设点,分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.
    【详解】
    解:(1)∵直线分别交两轴于点,
    ∴当时,,当时,
    ∴点,点
    ∵点在线段上,且.
    ∴点
    (2)∵点的横坐标为4,且在直线上,
    ∴,
    ∴点
    设直线的解析式
    ∴,解得:
    ∴直线解析式为:.
    (3)设点
    ①若以为边,
    ∵四边形是平行四边形,∴互相平分,
    ∵点,点,点,点
    ∴,解得,
    ∴点
    ②若以为边
    ∵四边形是平行四边形,∴互相平分,
    ∵点,点,点,点
    ∴,解得,
    ∴点
    ③若以为边,
    ∵四边形是平行四边形,∴互相平分,
    ∵点,点,点,点
    ∴,解得,
    ∴点
    综上所述:点的坐标是,,.
    此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.
    16、
    【解析】
    把A(0,-3),B(1,2)代入y=kx+b,利用待定系数法即可求出直线的表达式
    【详解】
    设,
    将(0,-3)(1,2)代入得,
    解得,
    .
    本题考查了一次函数式,利用待定系数法求出直线的表达式是解题的关键.
    17、证明:(1)见解析
    (2)见解析
    【解析】
    证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠ABF=∠ECF.
    ∵EC=DC,∴AB=EC.
    在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
    ∴△ABF≌△ECF.
    (2)证法一:由(1)知AB=EC,又AB∥EC,∴四边形ABEC是平行四边形.∴AF=EF,BF=CF.
    ∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC.
    ∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.
    ∴FA=FE=FB=FC,∴AE=BC.∴□ABEC是矩形.
    证法二:由(1)知AB=EC,又AB∥EC,∴四边形ABEC是平行四边形.
    ∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠BCE.
    又∵∠AFC=2∠D,∴∠AFC=2∠BCE.
    ∵∠AFC=∠FCE+∠FEC,∴∠FCE=∠FEC.∴∠D=∠FEC.
    ∴AE=AD.
    又∵CE=DC,∴AC⊥DE,即∠ACE=90°.
    ∴□ABEC是矩形.
    18、(1)y1=0.8x,y2=x(0≤x≤100);(2)x>300时,到乙商场购物会更省钱,x=300时,到两家商场去购物花费一样,当x<300时,到甲商场购物会更省钱.理由见解析.
    【解析】
    (1)根据单价乘以数量,可得函数解析式;
    (2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.
    【详解】
    (1)甲商场写出y关于x的函数解析式y1=0.8x,
    乙商场写出y关于x的函数解析式y2=100+(x﹣100)×0.7=0.7x+30 (x>100),
    y2=x (0≤x≤100);
    (2)由y1>y2,得0.8x>0.7x+30,
    x>300,
    当x>300时,到乙商场购物会更省钱;
    由y1=y2得0.8x=0.7x+30,
    x=300时,到两家商场去购物花费一样;
    由y1<y2,得0.8x<0.7x+30,
    x<300,
    当x<300时,到甲商场购物会更省钱;
    综上所述:x>300时,到乙商场购物会更省钱,x=300时,到两家商场去购物花费一样,当x<300时,到甲商场购物会更省钱.
    本题考查了一次函数的应用,分类讨论是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.
    【详解】
    ∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,
    ∴DF为三角形ABC的中位线,
    ∴DE∥BC,DF=BC,
    又∠ADF=90°,
    ∴∠C=∠ADF=90°,
    又BE⊥DE,DE⊥AC,
    ∴∠CDE=∠E=90°,
    ∴四边形BCDE为矩形,
    ∵BC=2,∴DF= BC=1,
    在Rt△ADF中,∠A=30°,DF=1,
    ∴tan30°= ,即AD= ,
    ∴CD=AD=,
    则矩形BCDE的面积S=CD⋅BC=2.
    故答案为2
    此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形
    20、1.
    【解析】
    试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.
    考点:关于y轴对称
    21、乙
    【解析】
    根据方差的定义,方差越小数据越稳定,方差最小的为乙,所以这四人中水平发挥最稳定的是乙.
    【详解】
    解:由表可知:S乙2=0.015<S丙2=0.025<S甲2=0.035<S丁2=0.1.故四人中乙发挥最稳定.
    故答案为:乙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    22、1
    【解析】
    过点G作GF⊥BC于F,交AD于E,根据角平分线的性质得到GF=GH=5,GE=GH=5,计算即可.
    【详解】
    解:过点G作GF⊥BC于F,交AD于E,
    ∵AD∥BC,GF⊥BC,
    ∴GE⊥AD,
    ∵AG是∠BAD的平分线,GE⊥AD,GH⊥AB,
    ∴GE=GH=4,
    ∵BG是∠ABC的平分线,FG⊥BC,GH⊥AB,
    ∴GF=GE=4,
    ∴EF=GF+GE=1,
    故答案为:1.
    本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    23、-1
    【解析】
    先提取公因式ab,整理后再把a+b的值代入计算即可.
    【详解】
    解:a+b=5时,
    原式=ab(a+b)=5ab=-10,
    解得:ab=-1.
    故答案为:-1.
    本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键,也是难点.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)证明见解析;(2)△AEF、 △ABE、 △ACE 、△CDE.
    【解析】
    (1)证明△AEF≌△DEB,可得AF=DB,再根据 BD=CD可得AF=CD,再由AF//CD,根据有一组对边平行且相等的四边形是平行四边形即可证得结论;
    (2)根据三角形中线将三角形分成面积相等的两个三角形以及全等三角形的面积相等即可得.
    【详解】
    (1)D为BC的点、E为AD的中点
    BD=CD、AE=DE
    AF∥BC,
    ∴∠AFE=∠DBE,
    在△AEF和△DEB中

    ∴△AEF≌△DEB,
    ∴AF=DB,
    又∵ BD=CD
    ∴AF=CD,
    又AF∥BC,
    ∴四边形ADCF是平行四边形;
    (2)∵△AEF≌△DEB,
    ∴S△AEF=S△DEB,
    ∵D为BC中点,
    ∴S△CDE=S△DEB,
    ∵E为AD中点,
    ∴S△ABE=S△DEB,S△ACE= S△CDE=S△DEB,
    综上,与△BDE面积相等的三角形有△AEF、 △ABE、 △ACE 、△CDE.
    本题考查了平行四边形的判定,全等三角形的判定与性质,三角形中线的作用,熟练掌握相关知识是解题的关键.
    25、(1)原式=;(2)x1=-1,x2=2.5;
    【解析】
    (1)根据负整数指数幂的意义与二次根式的性质分别化简得出答案;
    (2)整理后直接利用公式法或十字相乘法解方程.
    【详解】
    解:(1)原式=
    =
    = ;
    (2)
    整理得:
    (x+1)(2x-5)=0
    ∴ , .
    故答案为:1)原式=;(2) , .
    本题考查二次根式的混合运算和解一元二次方程,解题的关键是熟练运用一元二次方程的解法和二次根式的性质.
    26、(1)图见详解,点A1、B1、C1的坐标分别为(2,-1),(3,-3),(1,-3);(2)点B2的坐标为(-5,2),C2的坐标为(-3,2).
    【解析】
    (1)根据关于y轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可;
    (2)利用点A和点A2的坐标特征确定平移的方向与距离,从而写出B2和C2的坐标.
    【详解】
    解:(1)如图,△A1B1C1为所作,
    点A1、B1、C1的坐标分别为(2,-1),(3,-3),(1,-3);
    (2)∵点A(-2,-1)平移后的对应点A2的坐标为(-4,4),
    ∴将△ABC先向上平移5个单位长度,再向左平移2个单位长度得到△A2B2C2,
    ∴点B2的坐标为(-5,2),C2的坐标为(-3,2).
    本题考查了平移的性质、作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.
    题号





    总分
    得分
    选手




    众数(环)
    9
    8
    8
    10
    方差(环2)
    0.035
    0.015
    0.025
    0.27
    相关试卷

    2024-2025学年江苏省盐城市大丰数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年江苏省盐城市大丰数学九上开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省泰州市名校数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024-2025学年江苏省泰州市名校数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map