2024-2025学年广西省九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)( )
A.B.
C.D.
2、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )
A.(21008,0)B.(21008,﹣21008)C.(0,21010)D.(22019,﹣22019)
3、(4分)在ABCD中,∠A+∠C=160°,则∠C的度数为( )
A.100°B.80°C.60°D.20°
4、(4分)下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2
C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)
5、(4分)甲安装队为 A小区安装 台空调,乙安装队为 B小区安装 台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装 台,设乙队每天安装 台,根据题意,下面所列方程中正确的是
A.B.C.D.
6、(4分)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积可以表示为( )
A.4S1B.4S2C.4S2+S3D.2S1+8S3
7、(4分)正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.50,EF⊥AB,垂足为F,则EF的长( )
A.1B.C.D.
8、(4分)已知关于x的不等式组无解,则a的取值范围是( )
A.a<3B.a≤3C.a>3D.a≥3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在五边形中,若,则______.
10、(4分)正方形的边长为2,点是对角线上一点,和是直角三角形.则______.
11、(4分)分解因式:x2-2x+1=__________.
12、(4分)计算:=_____________.
13、(4分)若不等式组无解,则的取值范围是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=1.求AC的长.
15、(8分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?
(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.
16、(8分)(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.
(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;
(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;
(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.
17、(10分)计算:(1)
(2)已知,试求以a、b、c为三边的三角形的面积.
18、(10分)为了解某校八年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成两个不完整的统计图,请结合图中信息回答下列问题:
(1)本次抽测的男生有 人,请将条形图补充完成,本次抽测成绩的中位数是 次;
(2)若规定引体向上6次及其以上为体能达标,则该校500名八年级男生中估计有多少人体能达标?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)写出一个轴对称图形但不是中心对称图形的四边形:__________________
20、(4分)如图,正方形ABCD中,AB=6,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____。
21、(4分)当时,二次根式的值是___________.
22、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过______秒该直线可将平行四边形OABC分成面积相等的两部分.
23、(4分)我们知道,正整数的和1+3+5+…+(2n﹣1)=n2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A8=(2,3),则A2018=_____
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=1.
(1)直接写出B、C、D三点的坐标;
(1)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
25、(10分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.
26、(12分)如图,已知,点在上,点在上.
(1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);
(2)连结,求证四边形是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由题意结合函数图象的性质与实际意义,进行分析和判断.
【详解】
解:∵小刚在原地休息了6分钟,
∴排除A,
又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,
∴排除B、D,只有C满足.
故选:C.
本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.
2、B
【解析】
根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A (2 ,2 )(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.
【详解】
观察发现:
A(0,1)、A(1,1),A(2,0),A(2,−2),A (0,−4),A (−4,−4),A (−8,0),A (−8,8),A (0,16),A (16,16)…,
∴A (2 ,2 )(n为自然数).
∵2017=252×8+1,
∴A2017的坐标是(21008,﹣21008).
故选B.
此题考查规律型:点的坐标,解题关键在于找到规律
3、B
【解析】
根据平行四边形的对角相等,结合∠A+∠C=160°求解即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠A=∠C,
∵∠A+∠C=160°,
∴∠A=∠C=80°.
故选B.
本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
4、C
【解析】
解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;
B、a2+a+1无法因式分解,故此选项错误;
C、xy﹣x=x(y﹣1),故此选项正确;
D、2x+y无法因式分解,故此选项错误.
故选C.
本题考查因式分解.
5、D
【解析】
根据两队同时开工且恰好同时完工可得两队所用时间相等.由题意得甲队每天安装(x+2)台,所以甲安装66台所有时间为,乙队所用时间为,利用时间相等建立方程.
【详解】
乙队用的天数为:,甲队用的天数为:,
则所列方程为:=
故选D.
6、A
【解析】
设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.
【详解】
设等腰直角三角形的直角边为a,正方形边长为c,
则S2=(a+c)(a-c)=a2-c2,
∴S2=S1-S3,
∴S3=2S1-2S2,
∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1-2S2=4S1.
故选A.
本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系
7、B
【解析】
根据题意连接AC,与BD的交点为O.再根据, ,可得AE是的角平分线,所以可得OE=EF,BE= ,所以OB=,因此可计算出EF的长.
【详解】
解:根据题意连接AC,与BD的交点为O.
四边形ABCD为正方形
AE是的角平分线
故选B.
本题主要考查正方形的性质,关键在于根据题意列出方程,这是考试的常考点,应当熟练掌握.
8、B
【解析】
首先解不等式,然后根据不等式组无解确定a的范围.
【详解】
,
解不等式①得x≥2.
解不等式②得x<a﹣2.
∵不等式组无解,
∴a﹣2≤2.
∴a≤3
故选:B.
本题考查解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了,据此即可逆推出a的取值范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、100
【解析】
根据五边形内角和即可求解.
【详解】
∵五边形的内角和为(5-2)×180°=540°,
∴∠E=540°-()=540°-440°=100°,
故填100.
此题主要考查多边形的内角和,解题的关键是熟知多边形的内角和公式.
10、或.
【解析】
根据勾股定理得到BD=AC=,根据已知条件得到当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,求得DE=BD=,当点E与点B重合时,△EAD、△ECD是等腰直角三角形,得到DE=BD=.
【详解】
解:∵正方形ABCD的边长为2,
∴BD=AC=,
∵点E是对角线BD上一点,△EAD、△ECD是直角三角形,
∴当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,
∴DE=BD=,
当点E与点B重合时,△EAD、△ECD是等腰直角三角形,
∴DE=BD=,
故答案为:或.
本题考查了正方形的性质,等腰直角三角形的判定和性质,分类讨论是解题的关键.
11、(x-1)1.
【解析】
由完全平方公式可得:
故答案为.
错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
12、
【解析】
根据积的乘方和整式的运算法则,先算乘方再算乘法即可得出答案
【详解】
本题考查的是积的乘方和整式的运算法则,能够准确计算是解题的关键。
13、
【解析】
先求出两个不等式的解集,再求其公共解,然后根据大大小小找不到(无解)列出关于a的不等式求解即可.
【详解】
由①得,x>2,
由②得,x<3-a,
∵不等式组的无解,
∴3-a≤2,
∴a≥1.
故答案为:a≥1.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
三、解答题(本大题共5个小题,共48分)
14、AC=
【解析】
根据勾股定理求出BD,设AC=x,得到AD=x﹣6,根据勾股定理列方程,解方程得到答案.
【详解】
解:∵CD⊥AB,
∴∠ADC=∠BDC=90°,
在Rt△BCD中,BD==6,
设AC=AB=x,则AD=x﹣6,
在Rt△ACD中,AC2=AD2+CD2,即x2=(x﹣6)2+12,
解得,x=,即AC=.
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运用.
15、(1)1秒或2秒,(2)存在,秒或秒
【解析】
试题分析:(1)设经过秒后,根据的面积等于矩形面积的,得出方程解方程即可;(2)假设经过秒时,以为顶点的三角形与相似,分两种情况讨论,然后利用相似三角形的对应边成比例得出方程,解方程即可.
试题解析:(1)设经过秒后,的面积等于矩形面积的,
则有:,即,
解方程,得.
经检验,可知符合题意,所以经过1秒或2秒后,的面积等于矩形面积的.
(2)假设经过秒时,以为顶点的三角形与相似,
由矩形,可得,
因此有或
即①,或②.
解①,得;解②,得
经检验,或都符合题意,所以动点同时出发后,经过秒或秒时,以为顶点的三角形与相似
考点:1.矩形的性质2.相似三角形的判定与性质.
16、(1)S=(2) (3)存在,(6,6)或 ,
【解析】
(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;
(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
【详解】
解:(1)∵A,B的坐标分别是(6,0)、(0,10),
∴OA=6,OB=10,
当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,
∴S=×8×6=24;
当点P在线段BC上时,BD=8,高为6+10-t=16-t,
∴S=×8×(16-t)=-4t+64;
∴S与t之间的函数关系式为:;
(2)设P(m,10),则PB=PB′=m,如图1,
∵OB′=OB=10,OA=6,
∴AB′==8,
∴B′C=10-8=2,
∵PC=6-m,
∴m2=22+(6-m)2,
解得m=
则此时点P的坐标是(,10);
(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图2,
①当BD=BP1=OB-OD=10-2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP1=,
∴AP1=10−,
即P1(6,10-),
②当BP2=DP2时,此时P2(6,6);
③当DB=DP3=8时,
在Rt△DEP3中,DE=6,
根据勾股定理得:P3E=,
∴AP3=AE+EP3=+2,
即P3(6,+2),
综上,满足题意的P坐标为(6,6)或(6,10-),(6,+2).
本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.
17、(1);(2)以a、b、c为三边的三角形的面积为1.
【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;
(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.
【详解】
解:(1)原式;
(2)由题意得:,
,,,
,,,
,,
∴以a、b、c为三边的三角形是直角三角形.
∴它的面积是.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.
18、(1)本次抽测的男生有25人,抽测成绩的中位数是6次;(2)达标人数为360人.
【解析】
(1)根据题意和统计图中的数据可以求得本次抽测的男生人数和成绩为6次的人数,进而求得本次抽测成绩的中位数;
(2)求出达标率,然后可以估计该校500名八年级男生中有多少人体能达标.
【详解】
解:(1)由题意可得,
本次抽测的男生有:7÷28%=25(人),
抽测成绩为6次的有:25×32%=8(人),
补充完整的条形统计图如图所示,
则本次抽测成绩的中位数是:6次,
故答案为:25,6;
(2)由题意得,达标率为:,
估计该校500名八年级男生中达标人数为:(人).
本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,找出所求问题需要的条件,利用统计的知识解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、等腰梯形(答案不唯一)
【解析】
根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.
【详解】
是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等.
故答案为:等腰梯形(答案不唯一).
此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.
20、3
【解析】
连接DE,交AC于点P,连接BD.点B与点D关于AC对称,DE的长即为PE+PB的最小值,根据勾股定理即可得出DE的长度.
【详解】
连接DE,交AC于点P,连接BD.
∵点B与点D关于AC对称,
∴DE的长即为PE+PB的最小值,
∵AB=6,E是BC的中点,
∴CE=3,
在Rt△CDE中,
DE=
=
=
=3.
故答案为3.
主要考查轴对称,勾股定理等考点的理解,作出辅助线得出DE的长即为PE+PB的最小值为解决本题的关键.
21、2
【解析】
当时,===2,故答案为:2.
22、1
【解析】
首先连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将▱OABC的面积平分,然后计算出过D且平行直线y=2x+1的直线解析式y=2x-5,从而可得直线y=2x+1要向下平移1个单位,进而可得答案.
【详解】
连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将□OABC的面积平分;
∵四边形AOCB是平行四边形,
∴BD=OD,
∵B(1,2),点C(4,0),
∴D(3,1),
设DE的解析式为y=kx+b,
∵平行于y=2x+1,
∴k=2,
∵过D(3,1),
∴DE的解析式为y=2x-5,
∴直线y=2x+1要向下平移1个单位,
∴时间为1秒,
故答案为1.
此题主要考查了平行四边形的性质,以及一次函数,掌握经过平行四边形对角线交点的直线平分平行四边形的面积是解题的关键.
23、(32,48)
【解析】
先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.
【详解】
解:2018是第1009个数,
设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,
当n=31时,n2=961,
当n=32时,n2=1024,
故第1009个数在第32组,
第32组第一个数是961×2+2=1924,
则2018是第+1=48个数,
故A2018=(32,48).
故答案为:(32,48).
此题考查规律型:数字的变化类,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.
二、解答题(本大题共3个小题,共30分)
24、(2)B(,),C(,),D(,);(2)m=4,.
【解析】
试题分析:(2)由矩形的性质即可得出结论;
(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(,),C(,),由点A′,C′在反比例函数()的图象上,得到方程,即可求得结果.
试题解析:(2)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=2,∵A(,),AD∥x轴,∴B(,),C(,),D(,);
(2)∵将矩形ABCD向右平移m个单位,∴A′(,),C(,),∵点A′,C′在反比例函数()的图象上,∴,解得:m=4,∴A′(2,),∴,∴矩形ABCD的平移距离m=4,反比例函数的解析式为:.
考点:2.反比例函数综合题;2.坐标与图形变化-平移.
25、10cm
【解析】
先有∠A=30°,那么∠ABC=60°,结合BD是角平分线,那么可求出∠DBC=∠ABD=30°,在Rt△DBC中,利用直角三角形中30°的角所对的直角边等于斜边的一半,可求出BD,再利用勾股定理可求BC,同理,在Rt△ABC中,AB=2BC,即可求AB.
【详解】
解:在Rt△ABC中,∠C=90°,∠A=∠30°,
∴∠ABC=60°.
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD=30°.
∴∠ABD=∠BAD,
∴AD=DB,
在Rt△CBD中,CD=5cm,∠CBD=30°,
∴BD=10cm.
由勾股定理得,BC=5,
∴AB=2BC=10cm.
本题利用了角平分线定义、直角三角形中30°的角所对的直角边等于斜边的一半、勾股定理等知识.
26、(1)详见解析;(2)详见解析.
【解析】
(1)按照尺规作图的步骤作出图形即可;
(2)证明AC垂直平分EF,则根据对角线互相垂直平分的四边形为菱形得到四边形AECF是菱形.
【详解】
解:(1)如图,就是所求作的的垂直平分线,
(2)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠AFE=∠CEF,
∵EF垂直平分AC,
∴EA=EC,EF⊥AC,
∴∠CEF=∠AEF,
∴∠AFE=∠AEF,
∴AE=AF,
∴AC垂直平分EF,
∴四边形AECF是菱形.
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.
题号
一
二
三
四
五
总分
得分
2024-2025学年贵州省铜仁松桃县联考数学九年级第一学期开学联考模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁松桃县联考数学九年级第一学期开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西岳池县联考数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024-2025学年广西岳池县联考数学九年级第一学期开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西省贺州市九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年广西省贺州市九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。