|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】01
    2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】02
    2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】

    展开
    这是一份2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限,则m的取值范围是,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,分别是的边上的点,将四边形沿翻折,得到交于点则的周长为( )
    A.B.C.D.
    2、(4分)如图,点在反比例函数的图象上,点在反比例函数的图象上,轴,连接,过点作轴于点,交于点,若,则的值为( )
    A.﹣4B.﹣6C.﹣8D.﹣9
    3、(4分)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是,,,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )
    A.甲队B.乙队C.丙队D.哪一个都可以
    4、(4分)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④;其中正确的结论个数是( )
    A.1个B.2个C.3个D.4个
    5、(4分)下列计算中,①;②;③;④不正确的有( )
    A.3个B.2个C.1个D.4个
    6、(4分)如图,抛物线与直线经过点,且相交于另一点,抛物线与轴交于点,与轴交于另一点,过点的直线交抛物线于点,且轴,连接,当点在线段上移动时(不与、重合),下列结论正确的是( )
    A.B.
    C.D.四边形的最大面积为13
    7、(4分)已知正比例函数y=(m﹣8)x的图象过第二、四象限,则m的取值范围是( )
    A.m≥8B.m>8C.m≤8D.m<8
    8、(4分)下列各表达式不是表示与x的函数的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某班的中考英语口语考试成绩如表:
    则该班中考英语口语考试成绩的众数比中位数多_____分.
    10、(4分)若,则的值是________
    11、(4分)若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是_____.
    12、(4分)函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.
    13、(4分)一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形和都是平行四边形.求证:四边形是平行四边形.
    15、(8分)化简或求值
    (1)(1+)÷
    (2)1﹣÷,其中a=﹣,b=1.
    16、(8分)(江苏省泰州市海陵区2018年中考适应性训练数学试题) 如图,直线AB:y=−x−b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB∶OC=3∶1.
    (1)求点B的坐标;
    (2)求直线BC的函数关系式;
    (3)若点P(m,2)在△ABC的内部,求m的取值范围.
    17、(10分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
    (1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
    (2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
    18、(10分)如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某市出租车白天的收费起步价为10元,即路程不超过时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为 ,乘车费为元,那么与之间的关系式为__________________.
    20、(4分)当时,__.
    21、(4分)若二次根式有意义,则的取值范围为_____.
    22、(4分)若,则分式_______.
    23、(4分)命题”两条对角线相等的平行四边形是矩形“的逆命题是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.
    (1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接
    写出结论;
    (2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
    图1 图2
    25、(10分)解分式方程:+1.
    26、(12分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.
    (1)若直线AB解析式为,
    ①求点C的坐标;
    ②求△OAC的面积.
    (2)如图2,作的平分线ON,若AB⊥ON,垂足为E, OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠AEG=∠EGF,
    ∵将四边形EFCD沿EF翻折,得到EFC′D′,
    ∴∠GEF=∠DEF=60°,
    ∴∠AEG=60°,
    ∴∠EGF=60°,
    ∴△EGF是等边三角形,
    ∴EG=FG=EF=4,
    ∴△GEF的周长=4×3=12,
    故选:C.
    本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定与性质等知识;熟练掌握翻折变换的性质是解决问题的关键.
    2、B
    【解析】
    过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOC是矩形,四边形OEBF是矩形,得出S矩形AFOC=2,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OC,即OE=3OC,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.
    【详解】
    解:如图,过点作轴于,延长线段,交轴于,
    ∵轴,
    ∴轴,
    ∴四边形是矩形,四边形是矩形,
    ∴,,
    ∴,
    ∵点在函数的图象上,
    ∴,
    同理可得,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    即.
    故选:B.
    本题考查了反比例函数图象上点的坐标特征,矩形的判定和性质,平行线分线段成比例定理,作出辅助线构建矩形,运用反比例函数系数k的几何意义是解题的关键.
    3、A
    【解析】
    分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    详解:∵S甲2=1.44,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲队;
    故选A.
    点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    4、B
    【解析】
    根据菱形的性质,利用SAS证明即可判断①;根据△ABF≌△CAE得到∠BAF=∠ACE,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO,判断△ADO≌△ACH不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.
    【详解】
    解:∵在菱形ABCD中,AB=AC=1,
    ∴△ABC为等边三角形,
    ∴∠B=∠CAE=60°,
    又∵AE=BF,
    ∴△ABF≌△CAE(SAS),故①正确;
    ∴∠BAF=∠ACE,
    ∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;
    ∵∠B=∠CAE=60°,
    则在△ADO和△ACH中,
    ∠OAD=60°=∠CAB,
    ∴∠CAH≠60°,即∠CAH≠∠DAO,
    ∴△ADO≌△ACH不成立,故③错误;
    ∵AB=AC=1,过点A作AG⊥BC,垂足为G,
    ∴∠BAG=30°,BG=,
    ∴AG==,
    ∴菱形ABCD的面积为:==,故④错误;
    故正确的结论有2个,
    故选B.
    本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.
    5、A
    【解析】
    直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.
    【详解】
    解:①,故此选项错误,符合题意;
    ②,故此选项错误,符合题意;
    ③,故此选项正确,不符合题意;
    ④,故此选项错误,符合题意;
    故选:A
    此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.
    6、C
    【解析】
    】(1)当MN过对称轴的直线时,解得:BN=,而MN=,BN+MN=5=AB;
    (2)由BC∥x轴(B、C两点y坐标相同)推知∠BAE=∠CBA,而△ABC是等腰三角形,∠CBA≠∠BCA,故∠BAC=∠BAE错误;
    (3)如上图,过点A作AD⊥BC、BE⊥AC,由△ABC是等腰三角形得到:EB是∠ABC的平分线,∠ACB-∠ANM=∠CAD=∠ABC;
    (4)S四边形ACBM=S△ABC+S△ABM,其最大值为.
    【详解】
    解:将点A(2,0)代入抛物线y=ax2-x+4与直线y=x+b
    解得:a=,b=-,
    设:M点横坐标为m,则M(m,m2-m+4)、N(m,m-),
    其它点坐标为A(2,0)、B(5,4)、C(0,4),
    则AB=BC=5,则∠CAB=∠ACB,
    ∴△ABC是等腰三角形.
    A、当MN过对称轴的直线时,此时点M、N的坐标分别为(,-)、(,),
    由勾股定理得:BN=,而MN=,
    BN+MN=5=AB,
    故本选项错误;
    B、∵BC∥x轴(B、C两点y坐标相同),
    ∴∠BAE=∠CBA,而△ABC是等腰三角形不是等边三角形,
    ∠CBA≠∠BCA,
    ∴∠BAC=∠BAE不成立,
    故本选项错误;
    C、如上图,过点A作AD⊥BC、BE⊥AC,
    ∵△ABC是等腰三角形,
    ∴EB是∠ABC的平分线,
    易证:∠CAD=∠ABE=∠ABC,
    而∠ACB-∠ANM=∠CAD=∠ABC,
    故本选项正确;
    D、S四边形ACBM=S△ABC+S△ABM,
    S△ABC=10,
    S△ABM=MN•(xB-xA)=-m2+7m-10,其最大值为,
    故S四边形ACBM的最大值为10+=12.25,故本选项错误.
    故选:C.
    本题考查的是二次函数综合题,涉及到一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,抛物线与x轴的交点,以及等腰三角形、平行线等几何知识,是一道难度较大的题目.
    7、D
    【解析】
    根据正比例函数的性质,首先根据图象的象限来判断m﹣1的大小,进而计算m的范围.
    【详解】
    解:∵正比例函数y=(m﹣1)x的图象过第二、四象限,
    ∴m﹣1<0,
    解得:m<1.
    故选:D.
    本题主要考查正比例函数的性质,根据一次函数的一次项系数的正负确定图象所在的象限.
    8、C
    【解析】
    根据函数的概念进行判断。满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案.
    【详解】
    解:A、y=3x2对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意;
    B、对于x的每一个取值,y都有唯一确定的值是,所以y是x的函数,不符合题意;
    C、对于x的每一个取值,y都有两个值,所以y不是x的函数,符合题意;
    D、y=3x+1对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意.
    故选:C.
    主要考查了函数的概念.函数的概念:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3
    【解析】
    这组数出现次数最多的是3;∴这组数的众数是3.
    ∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,
    ∴这组数的中位数是2.
    ∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,
    故答案为3.
    【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    10、.
    【解析】
    解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.
    11、m≤
    【解析】
    由关于x的一元二次方程x2﹣2x+4m=0有实数根,可知b2﹣4ac≥0,据此列不等式求解即可.
    【详解】
    解:由题意得,
    4-4×1×4m≥0
    解之得m≤
    故答案为m≤.
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    12、−1【解析】
    根据x轴上方的图象的y值大于0进行解答.
    【详解】
    如图所示,x>−1时,y>0,
    当x<2时,y>0,
    ∴使y、y的值都大于0的x的取值范围是:−1故答案为:−1此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0
    13、x≥﹣1
    【解析】
    由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b≥kx解集.
    【详解】
    两个条直线的交点坐标为(−1, 2),且当x≥−1时,直线y=kx在y=ax+b直线的下方,故不等式ax+b≥kx的解集为x≥−1.
    故答案为x≥−1.
    本题考查了一次函数与一元一次不等式的知识点,解题的关键是根据图象可知一次函数与一元一次不等式的增减性.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】
    首先根据平行四边形的性质,可得AD∥BC,AD=BC,BC∥EF,BC=EF,进而得出AD∥EF,AD=EF,即可判定.
    【详解】
    解:∵四边形ABCD和BEFC都是平行四边形,
    ∴AD∥BC,AD=BC,BC∥EF,BC=EF.
    ∴AD∥EF,AD=EF.
    ∴四边形AEFD是平行四边形.
    此题主要考查利用平行四边形的性质进行平行四边形的判定,熟练掌握,即可解题.
    15、(1)、;(2)、2.
    【解析】
    原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将a与b的值代入计算即可求出值.
    【详解】
    解:(1)原式==
    (2)原式=1﹣•=1-=
    当a=﹣,b=1时,原式=2.
    考点:分式的化简求值;分式的混合运算
    16、(1)(0,6);(2)y=3x+6;(3)−【解析】
    【分析】(1)直接将点的坐标代入可得;(2)用待定系数法可得;(3)把y=2分别代入直线AB和直线BC的解析式,确定关键点的坐标,结合图形,从而求出m的取值范围.
    【详解】(1)将点A(6,0)代入直线AB的解析式可得:0=−6−b,
    解得:b=−6,
    ∴直线AB的解析式为y=−x+6,∴B点坐标为(0,6).
    (2)∵OB∶OC=3∶1,
    ∴OC=2,
    ∴点C的坐标为(−2,0),
    设BC的解析式是y=kx+6,则0=−2k+6,解得:k=3,
    ∴直线BC的解析式是:y=3x+6.
    (3)把y=2代入y=−x+6得x=4;把y=2代入y=3x+6中得x=,
    结合图象可知m的取值范围是.
    故正确答案为:(1)(0,6);(2)y=3x+6;(3)−【点睛】本题考核知识点:一次函数的图象.本题解题关键是:熟练运用待定系数法求解析式,求关键点坐标,再数结合,可分析出答案.
    17、(1)△CDF是等腰三角形;(2)∠APD=45°.
    【解析】
    (1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
    (2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.
    【详解】
    (1)△CDF是等腰直角三角形,理由如下:
    ∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
    在△FAD与△DBC中,,
    ∴△FAD≌△DBC(SAS),
    ∴FD=DC,∴△CDF是等腰三角形,
    ∵△FAD≌△DBC,∴∠FDA=∠DCB,
    ∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
    ∴△CDF是等腰直角三角形;
    (2)作AF⊥AB于A,使AF=BD,连结DF,CF,
    如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
    在△FAD与△DBC中,
    ,∴△FAD≌△DBC(SAS),
    ∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
    ∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
    ∴△CDF是等腰直角三角形,∴∠FCD=45°,
    ∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,
    ∴AE∥CF,∴∠APD=∠FCD=45°.
    18、见解析.
    【解析】
    方法一:先根据平行四边形的性质及中点的定义得出AE=FC,AE∥FC,再根据一组对边平行且相等的四边形是平行四边形证出四边形AECF是平行四边形,然后根据平行四边形的对边相等得出AF=CE;
    方法二:先利用“边角边”证明△ADF≌△CBE,再根据全等三角形的对应边相等得出AF=CE.
    【详解】
    证明:(证法一):
    ∵四边形ABCD为平行四边形,
    ∴AB∥CD,AB=CD,
    又∵E、F是AB、CD的中点,
    ∴AE=AB,CF=CD,
    ∴AE=CF,AE∥CF,
    ∴四边形AECF是平行四边形,
    ∴AF=CE.
    (证法二):
    ∵四边形ABCD为平行四边形,
    ∴AB=CD,AD=BC,∠B=∠D,
    又∵E、F是AB、CD的中点,
    ∴BE=AB,DF=CD,
    ∴BE=DF,
    ∴△ADF≌△CBE(SAS),
    ∴AF=CE.
    本题考查了证明两条线段相等的方法,一般来说,可以证明这两条线段是一个平行四边形的一组对边,也可以证明这两条线段所在的三角形全等.注意根据题目的已知条件,选择合理的判断方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据乘车费用=起步价+超过3千米的付费得出.
    【详解】
    解:依题意有:y=10+2(x-3)=2x+1.
    故答案为:y=2x+1.
    根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费
    20、
    【解析】
    将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.
    【详解】
    解:当x=1-时,
    x2-2x+2028=(x-1)2+2027
    =(1--1)2+2027
    =(-)2+2027,
    =3+2027
    =1,
    故答案为:1.
    本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.
    21、.
    【解析】
    根据二次根式有意义的条件:二次根号下被开方数≥0,即可解答.
    【详解】
    根据题意得,,
    解得.
    故答案为:.
    本题考查二次根式有意义的条件,熟练掌握二次根号下被开方数≥0是解题关键.
    22、
    【解析】
    先把化简得到,然后把分式化简,再把看作整体,代入即可.
    【详解】
    ∵,化简可得:,
    ∵,
    把代入,得:
    原式=;
    故答案为:.
    本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.
    23、矩形是两条对角线相等的平行四边形.
    【解析】
    把命题的条件和结论互换就得到它的逆命题.
    【详解】
    命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,
    故答案为矩形是两条对角线相等的平行四边形.
    本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)MA=MN,MA⊥MN;(2)成立,理由详见解析
    【解析】
    (1)解:连接DE,
    ∵四边形ABCD是正方形,
    ∴AD=CD=AB=BC,∠DAB=∠DCE=90°,
    ∵点M是DF的中点,
    ∴AM=DF.
    ∵△BEF是等腰直角三角形,
    ∴AF=CE,
    在△ADF与△CDE中,,
    ∴△ADF≌△CDE(SAS),
    ∴DE=DF.
    ∵点M,N分别为DF,EF的中点,
    ∴MN是△EFD的中位线,
    ∴MN=DE,
    ∴AM=MN;
    ∵MN是△EFD的中位线,
    ∴MN∥DE,
    ∴∠FMN=∠FDE.
    ∵AM=MD,
    ∴∠MAD=∠ADM,
    ∵∠AMF是△ADM的外角,
    ∴∠AMF=2∠ADM.
    ∵△ADF≌△CDE,
    ∴∠ADM=∠CDE,
    ∴∠ADM+∠CDE+∠FDE=∠FMN+∠AMF=90°,
    ∴MA⊥MN.
    ∴MA=MN,MA⊥MN.
    (2)成立.
    理由:连接DE.
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.
    在Rt△ADF中,
    ∵点M是DF的中点,
    ∴MA=DF=MD=MF,
    ∴∠1=∠1.
    ∵点N是EF的中点,
    ∴MN是△DEF的中位线,
    ∴MN=DE,MN∥DE.
    ∵△BEF是等腰直角三角形,
    ∴BF=BF,∠EBF=90°.
    ∵点E、F分别在正方形CB、AB的延长线上,
    ∴AB+BF=CB+BE,即AF=CE.
    在△ADF与△CDE中,
    ∴△ADF≌△CDE,
    ∴DF=DE,∠1=∠2,
    ∴MA=MN,∠2=∠1.
    ∵∠2+∠4=∠ABC=90°,∠4=∠5,
    ∴∠1+∠5=90°,
    ∴∠6=180°﹣(∠1+∠5)=90°,
    ∴∠7=∠6=90°,MA⊥MN.
    考点:四边形综合题
    25、x=.
    【解析】
    按照解分式方程的步骤解方程即可.
    【详解】
    解:
    方程两边都乘以得:
    解得:
    检验:当时,2(x﹣1)≠0,
    所以是原方程的解,
    即原方程的解为.
    本题考查分式方程注意检验.
    26、(1)①C(4,4);②12;(2)存在,1
    【解析】
    试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;
    ②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;
    (2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.
    (1)①由题意,
    解得所以C(4,4);
    ②把代入得,,所以A点坐标为(6,0),
    所以;
    (2)由题意,在OC上截取OM=OP,连结MQ
    ∵OQ平分∠AOC,
    ∴∠AOQ=∠COQ,
    又OQ=OQ,
    ∴△POQ≌△MOQ(SAS),
    ∴PQ=MQ,
    ∴AQ+PQ=AQ+MQ,
    当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
    即AQ+PQ存在最小值.
    ∵AB⊥ON,所以∠AEO=∠CEO,
    ∴△AEO≌△CEO(ASA),
    ∴OC=OA=4,
    ∵△OAC的面积为12,所以AM=12÷4=1,
    ∴AQ+PQ存在最小值,最小值为1.
    考点:一次函数的综合题
    点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.
    题号





    总分
    得分
    批阅人
    考试成绩/分
    30
    29
    28
    27
    26
    学生数/人
    3
    15
    13
    6
    3
    相关试卷

    2024-2025学年福建省厦门双十中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年福建省厦门双十中学数学九上开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省厦门市四校九年级数学第一学期开学经典试题【含答案】: 这是一份2024-2025学年福建省厦门市四校九年级数学第一学期开学经典试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年福建省厦门市思明区湖滨中学九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map