|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 试卷
      数学试卷.docx
    • 试卷
      数学试卷.pdf
    • 试卷
      数学试卷答题卡.pdf
    • 答案
      数学试卷答案.docx
    • 答案
      数学试卷答案.pdf
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学01
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学01
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学01
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学01
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学02
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学03
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学01
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学02
    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学03
    还剩1页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省福州市2024-2025学年高三年级上学期第一次质量检测数学

    展开
    这是一份福建省福州市2024-2025学年高三年级上学期第一次质量检测数学,文件包含数学试卷docx、数学试卷pdf、数学试卷答题卡pdf、数学试卷答案docx、数学试卷答案pdf等5份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,
    只有一项是符合题目要求的。
    题目 1 2 3 4 5 6 7 8
    答案 D C C B A D B C
    二、多项选择题:本题共 3 小题,每小题 6 分,共 18 分。在每小题给出的四个选项中,
    有多项符合题目要求。全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。
    题目 9 10 11
    答案 AD ABD BCD
    三、填空题:本大题共 3 小题,每小题 5 分,共 15 分。
    题目 12 13 14
    答案 3 5 (24,25)
    四、解答题:本题共 5 小题,共 77 分。解答应写出文字说明、证明过程或演算步骤。
    15. (13 分)
    (1)证明:数列 1
    a + 是等比数列;
    n
    所以 a +1 0 ,···················································································1 分
    n
    3(a +1)
    = n =
    3 ,····································································5 分
    a +1
    n
    又 a1 +1= 3 ,
    所以数列 1
    a + 是以3为首项,3为公比的等比数列. ·······························6 分
    n
    (2)由(1)得 a +1= 3n ,所以 a = 3n −1,·············································8 分
    n n
    所以 ( ) ( ) ( )
    3 1 32 1 3n 1 n
    数学试题 第1页(共 14 页)
    }已知数列 
    a 满足
    n
    a1 = 2 ,
    a +1 = 3a + 2 .
    n n
    (2)求 
    a 的前 n 项和
    n
    S .
    n
    【解法一】(1)证明:因为
    a +1 = 3a + 2 ,且 a = ,
    1 2
    n n
    a + + = a + +
    1 3 2 1
    所以 1
    n n
    a +1 a +1
    n n
    ········································································3 分
    ( )
    = 3+3 +3 + +3n − n ···························································· 10 分
    2 3
    3 3
    n+1 −
    = − n. ············································································ 13 分
    2
    所以 a + + = a + = (a + ),·····························································2 分
    n n n
    1 1 3 3 3 1
    因为 a1 = 2 ,所以 1 1 3 0
    a + =  ,所以 a +1 0 , ········································4 分
    n
    所以数列 1
    a + 是以3为首项,3为公比的等比数列. ·······························6 分
    n
    (2)略,同解法一.
    16. (15 分)
    已知△ABC 的内角 A,B,C 的对边分别为 a,b,c ,且 2acsC = 3bcsC + 3c cs B .
    (1)求角C ;
    (2)若 a = 4 , b = 3 , D 为 AB 中点,求CD 的长.
    【解法一】(1)因为 2acsC = 3bcsC + 3c cs B ,
    由正弦定理,
    得 2sin AcsC = 3 sin BcsC + 3 cs BsinC ··············································2 分
    = ( + ) ··································································4 分
    3sin B C
    = 3sin(π − A)
    = 3 sin A ,······································································6 分
    因为 0  A  π ,则sin A  0,所以 cs 3
    C = ,··········································7 分
    2
    π
    由于 0  C  π ,则C = ; ····································································8 分
    6
    1
    (2)因为 D 为 AB 中点,故 ( )
    2
    数学试题 第2页(共 14 页)
    }3 3
    − n+1
    = −
    1− 3
    n
    ············································································ 12 分
    【解法二】(1)证明:因为
    a +1 = 3a + 2 ,
    n n
    a + + =
    1
    所以 1
    n
    a +1
    n
    3 ,
    2 1
    2
    所以 ( )
    CD = CA + CB ······································································ 11 分
    4
    1 1 1 π
    2 2
    = CA + CB + CA CB ············································ 13 分
    cs
    4 4 2 6
    1 1 1 3
    = 3 + 16 +  3  4
    4 4 2 2
    31
    = ,················································································· 14 分
    4
    【解法二】(1)因为 2acsC = 3bcsC + 3c cs B ,
    a + b − c a + c − b
    2 2 2 2 2 2
    2acsC = 3b + 3c ···························2 分 由余弦定理,得
    2ab 2ac
    = 3a , ····························································4 分
    3
    所以 csC = , ················································································6 分
    2
    π
    由于 0  C  π ,则C = ; ····································································8 分
    6
    π
    (2)由(1)知, ACB = ,
    6
    在△ABC 中,由余弦定理,得
    c2 = a2 + b2 − 2abcsACB ··································································· 10 分
    2 2 3
    = 4 + ( 3) − 2 4 3 
    2
    7
    = , ··························································································· 11 分
    故 c = 7 ,······················································································· 12 分
    因为 D 为 AB 中点,
    所以 csADC + csBDC = 0 ,
    }所以 CD 的长为 31
    2
    . ······································································ 15 分

    AD CD AC BD CD BC
    2 2 2 2 2 2
    + − + + − =
    2 ADCD 2 BDCD
    0
    ,·········································· 13 分
    所以
    2 2
       
    7 7
    ( )
    2
      CD 3   CD 4
    + 2 − + 2 − 2
       
    2 2
      +   =
    0
    7 7
    2 CD 2 CD
    2 2
    数学试题 第3页(共 14 页)
    2 31
    CD = , ················································································ 14 分 解得
    4
    【解法三】(1)略,同解法一或解法二;
    π
    (2)由(1)知, ACB = ,
    6
    在△ABC 中,由余弦定理,得
    c2 = a2 + b2 − 2abcsACB ··································································· 10 分
    2 3
    ( )
    2
    = 4 + 3 − 2 4 3 
    2
    7
    = , ··························································································· 11 分
    故 c = 7 ,······················································································· 12 分
    3
    = − , ············································································· 13 分
    7
    在△ACD 中,由余弦定理,
    得 CD2 = AC2 + AD2 − 2AC  ADcs A
    2
        2 7 7 3
    ( )
    = 3 +   − 2 3  − 
    2 2 7
       
    31
    = ,······················································································· 14 分
    4
    17. (15 分)
    如图,在四棱锥 S − ABCD 中,BC ⊥ 平面 SAB ,AD∥BC ,
    SA = BC =1, SB = 2 , SBA = 45 .
    数学试题 第4页(共 14 页)
    }故 CD 的长为 31
    2
    .··········································································· 15 分
    所以 cs
    A =
    b + c − a
    2 2 2
    2bc
    =
    ( ) ( )
    2 2
    3 + 7 − 4
    2
    2 3  7
    故 CD 的长为 31
    2
    .··········································································· 15 分
    【解法一】(1)在 △SAB 中,
    因为 SA =1, SBA = 45 , SB = 2 ,
    由正弦定理,得
    所以sinSAB =1 ,
    因为 0  SAB 180 ,所以 SAB = 90 ,
    所以 SA ⊥ AB . ···················································································4 分
    因为 BC ⊥ 平面 SAB , SA  平面 SAB ,
    所以 BC ⊥ SA , ···················································································5 分
    又 BC AB = B ,
    所以 SA ⊥ 平面 ABCD ;·········································································6 分
    (2)解:由(1)知 SA ⊥ 平面 ABCD ,
    又 AB, AD 平面 ABCD ,所以 SA ⊥ AB , SA ⊥ AD ,
    因为 BC ⊥ 平面 SAB ,···········································································7 分
    AB  平面 SAB ,所以 BC ⊥ AB ,
    因为 AD∥BC ,所以 AD ⊥ AB ,
    所以 SA, AD, AB 两两垂直. ···································································8 分
    以点 A 为原点,分别以 AD , AB , AS 所在直线为 x 轴, y 轴, z 轴建立如图所示的
    空间直角坐标系, ················································································9 分
    S C  1 
    则 (0, 0,1), (1,1, 0),D ,0,0 ,
     2 
    设平面 SCD 的法向量为 n ,
    1 = (x, y, z)
    取 x = 2 ,则 1 = (2,−1,1)
    数学试题 第5页(共 14 页)
    }(2)若
    1
    AD = ,求平面 SCD 与平面 SAB 的夹角的余弦值.
    2
    SA SB
    =
    sinSBA sin SAB
    , ·········································································1 分
    所以
    1 2
    =
    sin 45 sin SAB
    , ······································································2 分
    所以 SC = (1,1,−1), SD =  1 ,0,−1
     2 

     ⊥

    n
    则 1


    n ⊥

    1
    SC,
    SD,

      = + − =
    n SC x y z 0,
     1


    1
    n  SD = x − z = 0,
     2
    1
    显然平面 SAB 的一个法向量 2 = (1,0,0)
    n ,················································ 12 分
    6
    = , ········································································· 14 分
    3
    【解法二】(1)证明:设 AB = x ,在 △SAB 中,
    因为 SA =1, SBA = 45 , SB = 2 ,
    由余弦定理,得
    SA2 = SB2 + AB2 − 2SB  ABcsSBA ,······················································1 分
    所以1= 2 + x2 − 2 2xcs 45 , ································································2 分
    所以 2 2 2 2 2 1
    x + − x  = ,
    2
    所以 x2 − 2x +1= 0 ,
    解得 x =1. ························································································3 分
    所以 SA2 + AB2 = SB2 = 2 ,所以 SA ⊥ AB .················································4 分
    因为 BC ⊥ 平面 SAB , SA  平面 SAB ,
    所以 BC ⊥ SA , ···················································································5 分
    又 BC AB = B ,
    所以 SA ⊥ 平面 ABCD ;·········································································6 分
    (2)略,同解法一.
    【解法三】(1)设 AB = x ,在 △SAB 中,
    因为 SA =1, SBA = 45 , SB = 2 ,
    由余弦定理,得
    SA2 = SB2 + AB2 − 2SB  ABcsSBA ,······················································1 分
    数学试题 第6页(共 14 页)
    }所以 cs
    n ,n =
    1 2
    n  n
    1 2
    n  n
    1 2
    ····································································· 13 分
    =
    2
    2 + −1 +1
    2 2
    ( )2
    所以平面 SCD 与平面 SAB 的夹角的余弦值为
    6
    3
    . ··································· 15 分
    所以 2 2 2 2 2 1
    x + − x  = ,
    2
    所以 x2 − 2x +1= 0 ,
    解得 x =1. ························································································3 分
    所以 SA2 + AB2 = SB2 = 2 ,所以 SA ⊥ AB .················································4 分
    因为 BC ⊥ 平面 SAB , BC  平面 ABCD ,
    所以平面 ABCD ⊥ 平面 SAB ;·································································5 分
    又平面 ABCD 平面 SAB = AB , SA ⊥ AB , SA  平面 SAB ,
    所以 SA ⊥ 平面 ABCD ;·········································································6 分
    (2)由(1)知 SA ⊥ 平面 ABCD ,过 B 作 BM SA,则 BM ⊥ 平面 ABCD ,
    又 AB,BC  平面 ABCD ,所以 BM ⊥ AB , BM ⊥ BC ,
    因为 BC ⊥ 平面 SAB ,···········································································7 分
    又 AB  平面 SAB ,所以 BC ⊥ AB ,
    所以 BM,BA,BC 两两垂直. ··································································8 分
    以点 B 为原点,分别以 BA , BC ,BM 所在直线为 x 轴, y 轴, z 轴建立如图所示的
    空间直角坐标系, ················································································9 分
    SC = − − , CD = 1,− 1 ,0
    ( 1, 1, 1)

     2 
    设平面 SCD 的法向量为 1 = (x, y, z)
    n ,
     ⊥
    n SC,
    则 1

    n
    ⊥ CD,

    1
    取 y = 2 ,则 ( )
    n1 = 1, 2,1 , ···································································· 11 分
    显然平面 SAB 的一个法向量 2 = (0,1, 0)
    n , ··············································· 12 分
    数学试题 第7页(共 14 页)
    }则 (1, 0,1),C(0,1, 0), 1, ,0 ,
     2 
    S D 
    1
    所以
      = − + − =
    n SC x y z

    1
    即 
    1
    n CD = x − y = 0,

     2
    1
    0,
    所以 cs
    n ,n
    1 2
    =
    n  n
    1 2
    n  n
    1 2
    ····································································· 13 分
    =
    2
    1 2 1
    2 2 2
    6
    = , ········································································· 14 分
    3
    【解法四】(1)略,同解法一或解法二或解法三;
    (2)延长CD 、 BA 交于点 M ,连接 SM ,
    则平面 SCD 平面 SAB = SM ,·······························································7 分
    在△SBM 中,
    SB = 2 , SBA = 45 , BM = 2 ,
    B C
    由余弦定理,得
    A
    SM 2 = SB2 + MB2 − 2SB  MBcsSBM ,
    D
    M
    2 2 22 2 2 2 2 2
    所以 ( )
    2
    SM = + −    = ,··············································9 分
    2
    所以 SM 2 + SB2 = BM 2 ,
    所以 SM ⊥ SB , ················································································ 10 分
    因为 BC ⊥ 平面 SAB , SM  平面 SAB ,
    所以 SM ⊥ BC ,又 SM ⊥ SB , SB BC = B ,
    所以 SM ⊥ 平面 SBC , ········································································ 11 分
    又 SC  平面 SBC ,所以 SM ⊥ SC ,
    所以 BSC 为平面 SCD 与平面 SAB 的夹角,············································ 12 分
    因为 BC ⊥ 平面 SAB , SB  平面 SAB ,
    所以 BC ⊥ SB ,
    因为 SB = 2,BC =1,得 SC = 3 ,······················································· 13 分
    SB 2 6
    cs = = = ,
    BSC 所以
    SC 3 3
    18. (17 分)
    (2)直线 x − my +1= 0(m  0)交W 于 A , B 两点.
    数学试题 第8页(共 14 页)
    }所以平面 SCD 与平面 SAB 的夹角的余弦值为
    6
    3
    . ··································· 15 分
    所以平面 SCD 与平面 SAB 的夹角的余弦值为
    6
    3
    . ··································· 15 分
    x y
    2 2
    已知椭圆W : ( )
    2 2 1 a b 0 + =   的离心率为
    + =   的离心率为
    2 2 1 a b 0
    a b
    (1)求W 的方程;
    1
    2
    ,且过点(2, 0).
    k
    (i)点 A 关于原点的对称点为C ,直线 BC 的斜率为 k ,证明:
    为定值;
    m
    (ii)若W 上存在点 P 使得 AP ,PB 在 AB 上的投影向量相等,且 △PAB 的重心在 y
    轴上,求直线 AB 的方程.
    (ⅰ) 证明:因为点 A 关于原点的对称点为C ,所以C(−x1,−y1) ,

    2 2
    x y
    + =1 
    1 1

    4 3
    因为点 A , B 在W 上,所以  ,················································6 分
    x y
    2 2
     + =
    2 2
    1

     4 3
    (ⅱ)设弦 AB 的中点 D 的坐标为 (x , y ) ,点 P 的坐标为 (x , y ) ,△PAB 的重心G 的
    D D P P
     2 2
    x y
     + =1
    坐标为 (x , y ) ,由  4 3
    ,得( )
    3m2 + 4 y2 − 6my − 9 = 0 ,················ 11 分 G G
    x my
     +
    − 1= 0
    数学试题 第9页(共 14 页)
    } =
    c 1

    a 2
    a = 2

    【解法一】(1)依题意,得 
     = −
    b a c
    2 2 2


    ,···················································3 分
    a

    解得 
    b

    =
    =
    2
    3
    , ····················································································4 分
    所以W 的方程为
    x + y = ; ································································5 分
    2 2
    1
    4 3
    (2)依题意可设点
    A(x , y ) ,
    1 1
    B(x , y ) ,且 x  x ,
    2 2 1 2
    所以
    x − x y − y
    2 2 2 2
    2 1 2 1
    = − ,即
    4 3
    y − y
    2 2
    2 1
    x − x
    2 2
    2 1
    = −
    3
    4
    ,···············································8 分
    因为直线 AB : x − my +1= 0(m  0)的斜率为
    1
    m
    ,直线 BC 的斜率为 k ,·········9 分
    所以
    k
    m
    y − y y + y
    =  =
    2 1 2 1
    x − x x + x
    2 1 2 1
    y − y
    2 2
    2 1
    x x
    2 − 2
    2 1
    = −
    3
    4


    k
    m
    3
    − ; ············································································· 11 分
    为定值
    4
    所以 ( ) ( )
     = 2 2 = 2 +  ,且
    36m +36 3m +4 144 m 1 0
    6m
    y + y =
    1 2 2 +
    3m 4
    因为 AP , PB 在 AB 上的投影向量相等,所以 PA = PB ,且 PD ⊥ AB ,
    所以直线 PD 的方程为 ( )
    y − y = −m x − x ,
    D D
    即 ( )
    m2 3m2 −1 = 0 ,
    又因为 m  0 ,所以 3
    m =  ,所以直线 AB 的方程为3x  3y + 3 = 0 . ······· 17 分
    3
    【解法二】(1)略,同解法一;
    (ⅰ) 证明:因为点 A 关于原点的对称点为C ,所以C(−x1,−y1) ,

    2 2
    x y
     + =
    1
    ,得( )
    3m + 4 y − 6my − 9 = 0 , ·······································6 分
    2 2
    由  4 3
    x my
     +
    − 1= 0
    6m 8
    所以 ( )
    x + x = my −1+ my −1= m y + y − 2 = m  − 2 = −
    1 2 1 2 1 2 2 2
    3m + 4 3m + 4
    数学试题 第10页(共 14 页)
    }因为 △PAB 的重心G 在 y 轴上,所以
    x + x + x
    1 2 P 0
    = , ······························ 13 分
    3
    6m 8
    所以 ( ) ( ) ( )
    x = − x + x = − my −1+ my −1 = −m y + y + 2 = −m + 2 =所以 ( ) ( ) ( )
    P 1 2 1 2 1 2 2 + 2 +
    3m 4 3m 4
    x + x y + y m
    = = − , y 1 2
    4 3
    所以 x 1 2 = = , ······························ 14 分
    D +
    2 2
    + D
    2 3m 4 2 3m 4

    3m  8 4  9m
    所以 = − ( − )= + −  + + +  = − +
    y y m x x m
    P D P D
    2 2 2 2
    3m 4 3m 4 3m 4 3m 4
    , ······· 15 分
    所以点
     − m 
    8 9
    P ,
     + + 
     m m 
    3 4 3 4
    2 2

    又点 P 在W 上,所以
    2 2
     8   9m 

       
     m +  +  m ,································ 16 分
    3 4 3 4
    2 2 
    + =

    1
    4 3
    (2)依题意可设点
    A(x , y ) ,
    1 1
    B(x , y ) ,且 x  x ,
    2 2 1 2
    所以 ( ) ( )
     = 2 2 = 2 +  ,且
    36m +36 3m +4 144 m 1 0
    6m
    y + y =
    1 2 2 +
    3m 4
    ,·················7 分
    6m
    y + y =
    所以 1 2 2
    3m + 4

    因为直线 BC 的斜率为 k ,
    (ⅱ)设弦 AB 的中点 D 的坐标为 (x , y ) ,点 P 的坐标为 (x , y ) ,△PAB 的重心G 的
    D D P P
    坐标为 (x , y ) ,
    G G
    因为 AP , PB 在 AB 上的投影向量相等,所以 PA = PB ,且 PD ⊥ AB ,
    所以直线 PD 的方程为 ( )
    y − y = −m x − x ,
    D D
    即 ( )
    m2 3m2 −1 = 0 ,
    又因为 m  0 ,所以 3
    m =  ,所以直线 AB 的方程为3x  3y + 3 = 0 . ······· 17 分
    3
    19. (17 分)
    阅读以下材料:
    数学试题 第11页(共 14 页)
    }k
    所以
    − (− ) +
    y y y y
    = = =
    2 1 2 1
    x − −x x + x
    ( )
    2 1 2 1
    6m
    3m + 4
    2
    8

    3m + 4
    2
    = −
    3m
    4
    ,······································ 10 分
    所以
    k
    m
    3
    − ; ·········································································· 11 分
    为定值
    4
    由(ⅰ)知,
    6m
    y + y =
    1 2 2
    3m + 4
    ,······························································· 12 分
    因为 △PAB 的重心G 在 y 轴上,所以
    x + x + x
    1 2 P 0
    = , ······························ 13 分
    3
    6m 8
    所以 ( ) ( ) ( )
    x = − x + x = − my −1+ my −1 = −m y + y + 2 = −m + 2 =所以 ( ) ( ) ( )
    P + +
    1 2 1 2 1 2 2 2
    3m 4 3m 4
    x + x
    4 y + y 3m
    所以 x = 1 2 = − , y = 1 2 = , ······························ 14 分
    m2 + 2
    D D
    2 3 4 2 3m + 4

    3m  8 4  9m
    所以 ( )
    y = y − m x − x = + − m + + +  = − +
    = − − = + −  + + +  = − +
    y = y − m x − x = + − m + + +  = − +
    P D P D
    2 2 2 2
    3m 4 3m 4 3m 4 3m 4
    , ······· 15 分
    所以点
     − 
    8 9m
    P ,
     + + 
     m m 
    3 4 3 4
    2 2

    又点 P 在W 上,所以
    2 2
     8   9m 

       
     + 4  +  3 + =
    3 4
    m m ,································ 16 分
    2 2

    1
    4 3
    上的凹函数;若 f (x)在区间 D 上单调递减,则称 f (x)为区间 D 上的凸函数.
    ②平面直角坐标系中的点 P 称为函数 f (x)的“ k 切点”,当且仅当过点 P 恰好能作曲
    线 y = f (x)的 k 条切线,其中 k N .
    (1)已知函数 ( ) ( )
    f x = ax4 + x3 − 3 2a +1 x2 − x + 3.
    (i)当 a 0 时,讨论 f (x)的凹凸性;
    (ii)当 a = 0 时,点 P 在 y 轴右侧且为 f (x)的“3切点”,求点 P 的集合;
    (2)已知函数 g (x)= xex ,点Q 在 y 轴左侧且为 g (x)的“3切点”,写出点Q 的集合
    (不需要写出求解过程).
    【解析】(1)因为 ( ) ( )
    f x = ax4 + x3 − 3 2a +1 x2 − x + 3,
    所以 ( ) ( )
    f  x = ax3 + x2 − a + x − , ··················································1 分
    4 3 6 2 1 1
    h x = 4ax + 3x − 6 2a +1 x −1, 令 ( ) ( )
    3 2
    h x = ax2 + x − a + = ax + a + x − .·····························2 分 所以 ( ) ( ) ( )( )
    12 6 6 2 1 6 2 2 1 1
    (i)当 a = 0 时, h(x)= 6(x −1),令 h(x) 0 ,解得 x 1;
    令 h(x) 0 ,解得 x 1;
    故 f (x)为区间1,+) 上的凹函数,为区间(−,1上的凸函数;·····················3 分
    ··············································································································4 分
    1
    a = − 时, ( ) ( )
    h x = − x − 2 ,故 f (x)为区间(−,+)上的凸函数;······5 分
    当 3 1 0
    4

    a  − 时,令 h(x) 0 ,解得 2 1 1
    1 − a x
    +
    4 2a
    数学试题 第12页(共 14 页)
    }1
    − a +
    当 a 0 x
    −   时,令 h(x) 0 ,解得1 2 1
    4 2a
    令 h(x) 0 ,解得 x 1或 − 2a +1
    x ,
    2a

     − 2a +1
    故 f (x)为区间
    1,
     
     2a 
    上的凹函数,为区间(−,1和
    − 2a +1 +
    ,

     2a 
    上的凸函数;
    令 h(x) 0 ,解得 x 1或 − 2a +1
    x ,
    2a
    和1,+) 上的凸函数;
    1

    a = − 时, f (x)为区间(−,+)上的凸函数;
    4
    上的凸函数;
    当 a = 0 时, f (x)为区间1,+) 上的凹函数,为区间(−,1上的凸函数;········6 分
    (ii)当 a = 0 时, f (x) = x − x − x + , f (x) = x − x − ,
    3 3 2 3 2
    3 6 1
    故在点(t, f (t))处的切线方程为 ( )( )
    y = 3t − 6t −1 x − t + t − 3t − t + 3 .············7 分
    2 3 2
    设 P(u,v)(u  0)为 f (x)的“3切点”,
    则关于t 的方程 ( )( )
    v = 3t − 6t −1 u − t + t − 3t − t + 3 有三个不同的解,
    2 3 2
    即关于t 的方程 ( )
    v = − t3 + + u t2 − ut + − u 有三个不同的解,
    2 3 3 6 3
    F t = −2t + 3 + 3u t − 6ut + 3 − u , 令 ( ) ( )
    3 2
    所以直线 y = v 与曲线 y = F (t)恰有三个不同的交点.··································8 分
    F(t)= − t + ( + u)t − u = − (t − )(t − u). ············································9 分
    6 6 1 6 6 1
    2
    当 u 1时, F (t),F(t)随t 变化情况如下:
    t (−,1) 1 (1,u) u (u,+)
    F t 0 + 0
    ( )
    F(t) 减 极小值 4 − 4u 增 极大值u3 − 3u2 − u + 3 减
    数学试题 第13页(共 14 页)
    }故 f (x)为区间
    − + 
    2a 1
    ,1
     
     2a 
    上的凹函数,为区间
    − − a + 
    2 1
    ,
     
     2a 
    和1,+) 上的凸函数;
    − 
    2a +1
    1
    综上所述,当 ,1
    a  − 时, f (x)为区间
     
    4 2a
     
    − − 2a +1
    上的凹函数,为区间
     
    ,
     2a 
    1  − 
    2a +1
    当 a 0 1,
    −   时,f (x)为区间
     
    4 2a
     
    上的凹函数,为区间(−,1和
    − 2a +1 +
    ,

     a 
    2
    当 u = 1时, F(t)= − (t − ) , F (t)单调递减,不符合题意;················· 12 分
    6 1 0
    2
    当 0  u  1 时, F (t),F(t)随t 变化情况如下:
    t (−,u) u (u,1) 1 (1,+)
    F t 0 + 0
    ( )
    F(t) 减 极小值u3 − 3u2 − u + 3 增 极大值 4 − 4u 减
    故 u3 − 3u2 − u + 3  v  4 − 4u ;
    综上所述,点 P 的集合为
              
    x 1 0 x 1
    ( )
       
    x, y 或 ;
    4 − 4   − 3 − + 3  − 3 − + 3   4 − 4
    x y x x x x x x y x
    3 2 3 2
         
    ······································································································ 14 分
      − −   − −   
    4 x 2 2 x 0
        
    x 4
    (2)点Q 的集合为 ( )
           − −   
    x y x + x +
    , 或 4 或 4 .
    xe y 0 xe y y xe
    x x x
       
    2 2
     
    e e
    数学试题 第14页(共 14 页)
    }
    相关试卷

    2024-2025学年福州市高三年级第一次质量检测数学试卷(附参考答案): 这是一份2024-2025学年福州市高三年级第一次质量检测数学试卷(附参考答案),共18页。

    福建省福州市2024-2025学年高三上学期第一次质量检测数学试题: 这是一份福建省福州市2024-2025学年高三上学期第一次质量检测数学试题,文件包含高三第一次质检2数学试卷pdf、高三第一次质检2024-2025学年福州市高三第一次质量检测数学答案11pdf、高三第一次质检2数学答题卡pdf等3份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    福建省福州市2024-2025学年高三上学期第一次质量检测数学试题: 这是一份福建省福州市2024-2025学年高三上学期第一次质量检测数学试题,共4页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map