福建省福州市2024-2025学年高三年级上学期第一次质量检测数学
展开一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的。
题目 1 2 3 4 5 6 7 8
答案 D C C B A D B C
二、多项选择题:本题共 3 小题,每小题 6 分,共 18 分。在每小题给出的四个选项中,
有多项符合题目要求。全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。
题目 9 10 11
答案 AD ABD BCD
三、填空题:本大题共 3 小题,每小题 5 分,共 15 分。
题目 12 13 14
答案 3 5 (24,25)
四、解答题:本题共 5 小题,共 77 分。解答应写出文字说明、证明过程或演算步骤。
15. (13 分)
(1)证明:数列 1
a + 是等比数列;
n
所以 a +1 0 ,···················································································1 分
n
3(a +1)
= n =
3 ,····································································5 分
a +1
n
又 a1 +1= 3 ,
所以数列 1
a + 是以3为首项,3为公比的等比数列. ·······························6 分
n
(2)由(1)得 a +1= 3n ,所以 a = 3n −1,·············································8 分
n n
所以 ( ) ( ) ( )
3 1 32 1 3n 1 n
数学试题 第1页(共 14 页)
}已知数列
a 满足
n
a1 = 2 ,
a +1 = 3a + 2 .
n n
(2)求
a 的前 n 项和
n
S .
n
【解法一】(1)证明:因为
a +1 = 3a + 2 ,且 a = ,
1 2
n n
a + + = a + +
1 3 2 1
所以 1
n n
a +1 a +1
n n
········································································3 分
( )
= 3+3 +3 + +3n − n ···························································· 10 分
2 3
3 3
n+1 −
= − n. ············································································ 13 分
2
所以 a + + = a + = (a + ),·····························································2 分
n n n
1 1 3 3 3 1
因为 a1 = 2 ,所以 1 1 3 0
a + = ,所以 a +1 0 , ········································4 分
n
所以数列 1
a + 是以3为首项,3为公比的等比数列. ·······························6 分
n
(2)略,同解法一.
16. (15 分)
已知△ABC 的内角 A,B,C 的对边分别为 a,b,c ,且 2acsC = 3bcsC + 3c cs B .
(1)求角C ;
(2)若 a = 4 , b = 3 , D 为 AB 中点,求CD 的长.
【解法一】(1)因为 2acsC = 3bcsC + 3c cs B ,
由正弦定理,
得 2sin AcsC = 3 sin BcsC + 3 cs BsinC ··············································2 分
= ( + ) ··································································4 分
3sin B C
= 3sin(π − A)
= 3 sin A ,······································································6 分
因为 0 A π ,则sin A 0,所以 cs 3
C = ,··········································7 分
2
π
由于 0 C π ,则C = ; ····································································8 分
6
1
(2)因为 D 为 AB 中点,故 ( )
2
数学试题 第2页(共 14 页)
}3 3
− n+1
= −
1− 3
n
············································································ 12 分
【解法二】(1)证明:因为
a +1 = 3a + 2 ,
n n
a + + =
1
所以 1
n
a +1
n
3 ,
2 1
2
所以 ( )
CD = CA + CB ······································································ 11 分
4
1 1 1 π
2 2
= CA + CB + CA CB ············································ 13 分
cs
4 4 2 6
1 1 1 3
= 3 + 16 + 3 4
4 4 2 2
31
= ,················································································· 14 分
4
【解法二】(1)因为 2acsC = 3bcsC + 3c cs B ,
a + b − c a + c − b
2 2 2 2 2 2
2acsC = 3b + 3c ···························2 分 由余弦定理,得
2ab 2ac
= 3a , ····························································4 分
3
所以 csC = , ················································································6 分
2
π
由于 0 C π ,则C = ; ····································································8 分
6
π
(2)由(1)知, ACB = ,
6
在△ABC 中,由余弦定理,得
c2 = a2 + b2 − 2abcsACB ··································································· 10 分
2 2 3
= 4 + ( 3) − 2 4 3
2
7
= , ··························································································· 11 分
故 c = 7 ,······················································································· 12 分
因为 D 为 AB 中点,
所以 csADC + csBDC = 0 ,
}所以 CD 的长为 31
2
. ······································································ 15 分
故
AD CD AC BD CD BC
2 2 2 2 2 2
+ − + + − =
2 ADCD 2 BDCD
0
,·········································· 13 分
所以
2 2
7 7
( )
2
CD 3 CD 4
+ 2 − + 2 − 2
2 2
+ =
0
7 7
2 CD 2 CD
2 2
数学试题 第3页(共 14 页)
2 31
CD = , ················································································ 14 分 解得
4
【解法三】(1)略,同解法一或解法二;
π
(2)由(1)知, ACB = ,
6
在△ABC 中,由余弦定理,得
c2 = a2 + b2 − 2abcsACB ··································································· 10 分
2 3
( )
2
= 4 + 3 − 2 4 3
2
7
= , ··························································································· 11 分
故 c = 7 ,······················································································· 12 分
3
= − , ············································································· 13 分
7
在△ACD 中,由余弦定理,
得 CD2 = AC2 + AD2 − 2AC ADcs A
2
2 7 7 3
( )
= 3 + − 2 3 −
2 2 7
31
= ,······················································································· 14 分
4
17. (15 分)
如图,在四棱锥 S − ABCD 中,BC ⊥ 平面 SAB ,AD∥BC ,
SA = BC =1, SB = 2 , SBA = 45 .
数学试题 第4页(共 14 页)
}故 CD 的长为 31
2
.··········································································· 15 分
所以 cs
A =
b + c − a
2 2 2
2bc
=
( ) ( )
2 2
3 + 7 − 4
2
2 3 7
故 CD 的长为 31
2
.··········································································· 15 分
【解法一】(1)在 △SAB 中,
因为 SA =1, SBA = 45 , SB = 2 ,
由正弦定理,得
所以sinSAB =1 ,
因为 0 SAB 180 ,所以 SAB = 90 ,
所以 SA ⊥ AB . ···················································································4 分
因为 BC ⊥ 平面 SAB , SA 平面 SAB ,
所以 BC ⊥ SA , ···················································································5 分
又 BC AB = B ,
所以 SA ⊥ 平面 ABCD ;·········································································6 分
(2)解:由(1)知 SA ⊥ 平面 ABCD ,
又 AB, AD 平面 ABCD ,所以 SA ⊥ AB , SA ⊥ AD ,
因为 BC ⊥ 平面 SAB ,···········································································7 分
AB 平面 SAB ,所以 BC ⊥ AB ,
因为 AD∥BC ,所以 AD ⊥ AB ,
所以 SA, AD, AB 两两垂直. ···································································8 分
以点 A 为原点,分别以 AD , AB , AS 所在直线为 x 轴, y 轴, z 轴建立如图所示的
空间直角坐标系, ················································································9 分
S C 1
则 (0, 0,1), (1,1, 0),D ,0,0 ,
2
设平面 SCD 的法向量为 n ,
1 = (x, y, z)
取 x = 2 ,则 1 = (2,−1,1)
数学试题 第5页(共 14 页)
}(2)若
1
AD = ,求平面 SCD 与平面 SAB 的夹角的余弦值.
2
SA SB
=
sinSBA sin SAB
, ·········································································1 分
所以
1 2
=
sin 45 sin SAB
, ······································································2 分
所以 SC = (1,1,−1), SD = 1 ,0,−1
2
,
⊥
n
则 1
n ⊥
1
SC,
SD,
即
= + − =
n SC x y z 0,
1
1
n SD = x − z = 0,
2
1
显然平面 SAB 的一个法向量 2 = (1,0,0)
n ,················································ 12 分
6
= , ········································································· 14 分
3
【解法二】(1)证明:设 AB = x ,在 △SAB 中,
因为 SA =1, SBA = 45 , SB = 2 ,
由余弦定理,得
SA2 = SB2 + AB2 − 2SB ABcsSBA ,······················································1 分
所以1= 2 + x2 − 2 2xcs 45 , ································································2 分
所以 2 2 2 2 2 1
x + − x = ,
2
所以 x2 − 2x +1= 0 ,
解得 x =1. ························································································3 分
所以 SA2 + AB2 = SB2 = 2 ,所以 SA ⊥ AB .················································4 分
因为 BC ⊥ 平面 SAB , SA 平面 SAB ,
所以 BC ⊥ SA , ···················································································5 分
又 BC AB = B ,
所以 SA ⊥ 平面 ABCD ;·········································································6 分
(2)略,同解法一.
【解法三】(1)设 AB = x ,在 △SAB 中,
因为 SA =1, SBA = 45 , SB = 2 ,
由余弦定理,得
SA2 = SB2 + AB2 − 2SB ABcsSBA ,······················································1 分
数学试题 第6页(共 14 页)
}所以 cs
n ,n =
1 2
n n
1 2
n n
1 2
····································································· 13 分
=
2
2 + −1 +1
2 2
( )2
所以平面 SCD 与平面 SAB 的夹角的余弦值为
6
3
. ··································· 15 分
所以 2 2 2 2 2 1
x + − x = ,
2
所以 x2 − 2x +1= 0 ,
解得 x =1. ························································································3 分
所以 SA2 + AB2 = SB2 = 2 ,所以 SA ⊥ AB .················································4 分
因为 BC ⊥ 平面 SAB , BC 平面 ABCD ,
所以平面 ABCD ⊥ 平面 SAB ;·································································5 分
又平面 ABCD 平面 SAB = AB , SA ⊥ AB , SA 平面 SAB ,
所以 SA ⊥ 平面 ABCD ;·········································································6 分
(2)由(1)知 SA ⊥ 平面 ABCD ,过 B 作 BM SA,则 BM ⊥ 平面 ABCD ,
又 AB,BC 平面 ABCD ,所以 BM ⊥ AB , BM ⊥ BC ,
因为 BC ⊥ 平面 SAB ,···········································································7 分
又 AB 平面 SAB ,所以 BC ⊥ AB ,
所以 BM,BA,BC 两两垂直. ··································································8 分
以点 B 为原点,分别以 BA , BC ,BM 所在直线为 x 轴, y 轴, z 轴建立如图所示的
空间直角坐标系, ················································································9 分
SC = − − , CD = 1,− 1 ,0
( 1, 1, 1)
,
2
设平面 SCD 的法向量为 1 = (x, y, z)
n ,
⊥
n SC,
则 1
n
⊥ CD,
1
取 y = 2 ,则 ( )
n1 = 1, 2,1 , ···································································· 11 分
显然平面 SAB 的一个法向量 2 = (0,1, 0)
n , ··············································· 12 分
数学试题 第7页(共 14 页)
}则 (1, 0,1),C(0,1, 0), 1, ,0 ,
2
S D
1
所以
= − + − =
n SC x y z
1
即
1
n CD = x − y = 0,
2
1
0,
所以 cs
n ,n
1 2
=
n n
1 2
n n
1 2
····································································· 13 分
=
2
1 2 1
2 2 2
6
= , ········································································· 14 分
3
【解法四】(1)略,同解法一或解法二或解法三;
(2)延长CD 、 BA 交于点 M ,连接 SM ,
则平面 SCD 平面 SAB = SM ,·······························································7 分
在△SBM 中,
SB = 2 , SBA = 45 , BM = 2 ,
B C
由余弦定理,得
A
SM 2 = SB2 + MB2 − 2SB MBcsSBM ,
D
M
2 2 22 2 2 2 2 2
所以 ( )
2
SM = + − = ,··············································9 分
2
所以 SM 2 + SB2 = BM 2 ,
所以 SM ⊥ SB , ················································································ 10 分
因为 BC ⊥ 平面 SAB , SM 平面 SAB ,
所以 SM ⊥ BC ,又 SM ⊥ SB , SB BC = B ,
所以 SM ⊥ 平面 SBC , ········································································ 11 分
又 SC 平面 SBC ,所以 SM ⊥ SC ,
所以 BSC 为平面 SCD 与平面 SAB 的夹角,············································ 12 分
因为 BC ⊥ 平面 SAB , SB 平面 SAB ,
所以 BC ⊥ SB ,
因为 SB = 2,BC =1,得 SC = 3 ,······················································· 13 分
SB 2 6
cs = = = ,
BSC 所以
SC 3 3
18. (17 分)
(2)直线 x − my +1= 0(m 0)交W 于 A , B 两点.
数学试题 第8页(共 14 页)
}所以平面 SCD 与平面 SAB 的夹角的余弦值为
6
3
. ··································· 15 分
所以平面 SCD 与平面 SAB 的夹角的余弦值为
6
3
. ··································· 15 分
x y
2 2
已知椭圆W : ( )
2 2 1 a b 0 + = 的离心率为
+ = 的离心率为
2 2 1 a b 0
a b
(1)求W 的方程;
1
2
,且过点(2, 0).
k
(i)点 A 关于原点的对称点为C ,直线 BC 的斜率为 k ,证明:
为定值;
m
(ii)若W 上存在点 P 使得 AP ,PB 在 AB 上的投影向量相等,且 △PAB 的重心在 y
轴上,求直线 AB 的方程.
(ⅰ) 证明:因为点 A 关于原点的对称点为C ,所以C(−x1,−y1) ,
2 2
x y
+ =1
1 1
4 3
因为点 A , B 在W 上,所以 ,················································6 分
x y
2 2
+ =
2 2
1
4 3
(ⅱ)设弦 AB 的中点 D 的坐标为 (x , y ) ,点 P 的坐标为 (x , y ) ,△PAB 的重心G 的
D D P P
2 2
x y
+ =1
坐标为 (x , y ) ,由 4 3
,得( )
3m2 + 4 y2 − 6my − 9 = 0 ,················ 11 分 G G
x my
+
− 1= 0
数学试题 第9页(共 14 页)
} =
c 1
a 2
a = 2
【解法一】(1)依题意,得
= −
b a c
2 2 2
,···················································3 分
a
解得
b
=
=
2
3
, ····················································································4 分
所以W 的方程为
x + y = ; ································································5 分
2 2
1
4 3
(2)依题意可设点
A(x , y ) ,
1 1
B(x , y ) ,且 x x ,
2 2 1 2
所以
x − x y − y
2 2 2 2
2 1 2 1
= − ,即
4 3
y − y
2 2
2 1
x − x
2 2
2 1
= −
3
4
,···············································8 分
因为直线 AB : x − my +1= 0(m 0)的斜率为
1
m
,直线 BC 的斜率为 k ,·········9 分
所以
k
m
y − y y + y
= =
2 1 2 1
x − x x + x
2 1 2 1
y − y
2 2
2 1
x x
2 − 2
2 1
= −
3
4
,
即
k
m
3
− ; ············································································· 11 分
为定值
4
所以 ( ) ( )
= 2 2 = 2 + ,且
36m +36 3m +4 144 m 1 0
6m
y + y =
1 2 2 +
3m 4
因为 AP , PB 在 AB 上的投影向量相等,所以 PA = PB ,且 PD ⊥ AB ,
所以直线 PD 的方程为 ( )
y − y = −m x − x ,
D D
即 ( )
m2 3m2 −1 = 0 ,
又因为 m 0 ,所以 3
m = ,所以直线 AB 的方程为3x 3y + 3 = 0 . ······· 17 分
3
【解法二】(1)略,同解法一;
(ⅰ) 证明:因为点 A 关于原点的对称点为C ,所以C(−x1,−y1) ,
2 2
x y
+ =
1
,得( )
3m + 4 y − 6my − 9 = 0 , ·······································6 分
2 2
由 4 3
x my
+
− 1= 0
6m 8
所以 ( )
x + x = my −1+ my −1= m y + y − 2 = m − 2 = −
1 2 1 2 1 2 2 2
3m + 4 3m + 4
数学试题 第10页(共 14 页)
}因为 △PAB 的重心G 在 y 轴上,所以
x + x + x
1 2 P 0
= , ······························ 13 分
3
6m 8
所以 ( ) ( ) ( )
x = − x + x = − my −1+ my −1 = −m y + y + 2 = −m + 2 =所以 ( ) ( ) ( )
P 1 2 1 2 1 2 2 + 2 +
3m 4 3m 4
x + x y + y m
= = − , y 1 2
4 3
所以 x 1 2 = = , ······························ 14 分
D +
2 2
+ D
2 3m 4 2 3m 4
,
3m 8 4 9m
所以 = − ( − )= + − + + + = − +
y y m x x m
P D P D
2 2 2 2
3m 4 3m 4 3m 4 3m 4
, ······· 15 分
所以点
− m
8 9
P ,
+ +
m m
3 4 3 4
2 2
,
又点 P 在W 上,所以
2 2
8 9m
−
m + + m ,································ 16 分
3 4 3 4
2 2
+ =
1
4 3
(2)依题意可设点
A(x , y ) ,
1 1
B(x , y ) ,且 x x ,
2 2 1 2
所以 ( ) ( )
= 2 2 = 2 + ,且
36m +36 3m +4 144 m 1 0
6m
y + y =
1 2 2 +
3m 4
,·················7 分
6m
y + y =
所以 1 2 2
3m + 4
,
因为直线 BC 的斜率为 k ,
(ⅱ)设弦 AB 的中点 D 的坐标为 (x , y ) ,点 P 的坐标为 (x , y ) ,△PAB 的重心G 的
D D P P
坐标为 (x , y ) ,
G G
因为 AP , PB 在 AB 上的投影向量相等,所以 PA = PB ,且 PD ⊥ AB ,
所以直线 PD 的方程为 ( )
y − y = −m x − x ,
D D
即 ( )
m2 3m2 −1 = 0 ,
又因为 m 0 ,所以 3
m = ,所以直线 AB 的方程为3x 3y + 3 = 0 . ······· 17 分
3
19. (17 分)
阅读以下材料:
数学试题 第11页(共 14 页)
}k
所以
− (− ) +
y y y y
= = =
2 1 2 1
x − −x x + x
( )
2 1 2 1
6m
3m + 4
2
8
−
3m + 4
2
= −
3m
4
,······································ 10 分
所以
k
m
3
− ; ·········································································· 11 分
为定值
4
由(ⅰ)知,
6m
y + y =
1 2 2
3m + 4
,······························································· 12 分
因为 △PAB 的重心G 在 y 轴上,所以
x + x + x
1 2 P 0
= , ······························ 13 分
3
6m 8
所以 ( ) ( ) ( )
x = − x + x = − my −1+ my −1 = −m y + y + 2 = −m + 2 =所以 ( ) ( ) ( )
P + +
1 2 1 2 1 2 2 2
3m 4 3m 4
x + x
4 y + y 3m
所以 x = 1 2 = − , y = 1 2 = , ······························ 14 分
m2 + 2
D D
2 3 4 2 3m + 4
,
3m 8 4 9m
所以 ( )
y = y − m x − x = + − m + + + = − +
= − − = + − + + + = − +
y = y − m x − x = + − m + + + = − +
P D P D
2 2 2 2
3m 4 3m 4 3m 4 3m 4
, ······· 15 分
所以点
−
8 9m
P ,
+ +
m m
3 4 3 4
2 2
,
又点 P 在W 上,所以
2 2
8 9m
−
+ 4 + 3 + =
3 4
m m ,································ 16 分
2 2
1
4 3
上的凹函数;若 f (x)在区间 D 上单调递减,则称 f (x)为区间 D 上的凸函数.
②平面直角坐标系中的点 P 称为函数 f (x)的“ k 切点”,当且仅当过点 P 恰好能作曲
线 y = f (x)的 k 条切线,其中 k N .
(1)已知函数 ( ) ( )
f x = ax4 + x3 − 3 2a +1 x2 − x + 3.
(i)当 a 0 时,讨论 f (x)的凹凸性;
(ii)当 a = 0 时,点 P 在 y 轴右侧且为 f (x)的“3切点”,求点 P 的集合;
(2)已知函数 g (x)= xex ,点Q 在 y 轴左侧且为 g (x)的“3切点”,写出点Q 的集合
(不需要写出求解过程).
【解析】(1)因为 ( ) ( )
f x = ax4 + x3 − 3 2a +1 x2 − x + 3,
所以 ( ) ( )
f x = ax3 + x2 − a + x − , ··················································1 分
4 3 6 2 1 1
h x = 4ax + 3x − 6 2a +1 x −1, 令 ( ) ( )
3 2
h x = ax2 + x − a + = ax + a + x − .·····························2 分 所以 ( ) ( ) ( )( )
12 6 6 2 1 6 2 2 1 1
(i)当 a = 0 时, h(x)= 6(x −1),令 h(x) 0 ,解得 x 1;
令 h(x) 0 ,解得 x 1;
故 f (x)为区间1,+) 上的凹函数,为区间(−,1上的凸函数;·····················3 分
··············································································································4 分
1
a = − 时, ( ) ( )
h x = − x − 2 ,故 f (x)为区间(−,+)上的凸函数;······5 分
当 3 1 0
4
当
a − 时,令 h(x) 0 ,解得 2 1 1
1 − a x
+
4 2a
数学试题 第12页(共 14 页)
}1
− a +
当 a 0 x
− 时,令 h(x) 0 ,解得1 2 1
4 2a
令 h(x) 0 ,解得 x 1或 − 2a +1
x ,
2a
,
− 2a +1
故 f (x)为区间
1,
2a
上的凹函数,为区间(−,1和
− 2a +1 +
,
2a
上的凸函数;
令 h(x) 0 ,解得 x 1或 − 2a +1
x ,
2a
和1,+) 上的凸函数;
1
当
a = − 时, f (x)为区间(−,+)上的凸函数;
4
上的凸函数;
当 a = 0 时, f (x)为区间1,+) 上的凹函数,为区间(−,1上的凸函数;········6 分
(ii)当 a = 0 时, f (x) = x − x − x + , f (x) = x − x − ,
3 3 2 3 2
3 6 1
故在点(t, f (t))处的切线方程为 ( )( )
y = 3t − 6t −1 x − t + t − 3t − t + 3 .············7 分
2 3 2
设 P(u,v)(u 0)为 f (x)的“3切点”,
则关于t 的方程 ( )( )
v = 3t − 6t −1 u − t + t − 3t − t + 3 有三个不同的解,
2 3 2
即关于t 的方程 ( )
v = − t3 + + u t2 − ut + − u 有三个不同的解,
2 3 3 6 3
F t = −2t + 3 + 3u t − 6ut + 3 − u , 令 ( ) ( )
3 2
所以直线 y = v 与曲线 y = F (t)恰有三个不同的交点.··································8 分
F(t)= − t + ( + u)t − u = − (t − )(t − u). ············································9 分
6 6 1 6 6 1
2
当 u 1时, F (t),F(t)随t 变化情况如下:
t (−,1) 1 (1,u) u (u,+)
F t 0 + 0
( )
F(t) 减 极小值 4 − 4u 增 极大值u3 − 3u2 − u + 3 减
数学试题 第13页(共 14 页)
}故 f (x)为区间
− +
2a 1
,1
2a
上的凹函数,为区间
− − a +
2 1
,
2a
和1,+) 上的凸函数;
−
2a +1
1
综上所述,当 ,1
a − 时, f (x)为区间
4 2a
− − 2a +1
上的凹函数,为区间
,
2a
1 −
2a +1
当 a 0 1,
− 时,f (x)为区间
4 2a
上的凹函数,为区间(−,1和
− 2a +1 +
,
a
2
当 u = 1时, F(t)= − (t − ) , F (t)单调递减,不符合题意;················· 12 分
6 1 0
2
当 0 u 1 时, F (t),F(t)随t 变化情况如下:
t (−,u) u (u,1) 1 (1,+)
F t 0 + 0
( )
F(t) 减 极小值u3 − 3u2 − u + 3 增 极大值 4 − 4u 减
故 u3 − 3u2 − u + 3 v 4 − 4u ;
综上所述,点 P 的集合为
x 1 0 x 1
( )
x, y 或 ;
4 − 4 − 3 − + 3 − 3 − + 3 4 − 4
x y x x x x x x y x
3 2 3 2
······································································································ 14 分
− − − −
4 x 2 2 x 0
x 4
(2)点Q 的集合为 ( )
− −
x y x + x +
, 或 4 或 4 .
xe y 0 xe y y xe
x x x
2 2
e e
数学试题 第14页(共 14 页)
}
2024-2025学年福州市高三年级第一次质量检测数学试卷(附参考答案): 这是一份2024-2025学年福州市高三年级第一次质量检测数学试卷(附参考答案),共18页。
福建省福州市2024-2025学年高三上学期第一次质量检测数学试题: 这是一份福建省福州市2024-2025学年高三上学期第一次质量检测数学试题,文件包含高三第一次质检2数学试卷pdf、高三第一次质检2024-2025学年福州市高三第一次质量检测数学答案11pdf、高三第一次质检2数学答题卡pdf等3份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
福建省福州市2024-2025学年高三上学期第一次质量检测数学试题: 这是一份福建省福州市2024-2025学年高三上学期第一次质量检测数学试题,共4页。