辽宁省锦州市凌海市2023-2024学年数学八年级第一学期期末教学质量检测模拟试题【含解析】
展开注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.下列计算正确的是( )
A.=2B.﹣=2
C.=1D.=3﹣2
2.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是( )
A.2,4,6B.4,6,8C.3,4,5D.6,8,10
3.如图①是一直角三角形纸片,∠A=30°,BC=4 cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为( )
A.cmB.cmC.cmD.3 cm
4.为了说明“若a≤b,则ac≤bc”是假命题, c的值可以取( )
A.B.0C.1D.
5.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( )
A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°
C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°
6.下列说法中正确的个数是( )
①若是完全平方式,则k=3
②工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质
③在三角形内部到三边距离相等的点是三个内角平分线的交点
④当时
⑤若点P在∠AOB内部,D,E分别在∠AOB的两条边上,PD=PE,则点P在∠AOB的平分线上
A.1个B.2个C.3个D.4个
7.如图,数轴上A,B两点对应的实数分别是1和,若A点关于B点的对称点为点C,则点C所对应的实数为( )
A.2-1B.1+C.2+D.2+1
8.据广东省旅游局统计显示,年月全省旅游住宿设施接待过夜旅客约人,将用科学计数法表示为( )
A.B.C.D.
9.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,则下列方程组正确的是( )
A.B.C.D.
10.下面说法中,正确的是( )
A.把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解
B.分式方程中,分母中一定含有未知数
C.分式方程就是含有分母的方程
D.分式方程一定有解
11.若(a+b)2=4,(a -b)2=6,则 a2+b2 的值为( )
A.25B.16C.5D.4
12.下列计算正确的是( )
A.x2•x4=x8B.x6÷x3=x2
C.2a2+3a3=5a5D.(2x3)2=4x6
二、填空题(每题4分,共24分)
13.分式与的最简公分母为_______________
14.若不等式组有解,则的取值范围是____.
15.在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.
16.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.
17.用科学计数法表示为______
18.如图,是的角平分线,,垂足为,且交线段于点,连结,若,设,则关于的函数表达式为_____________.
三、解答题(共78分)
19.(8分)如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB =DE,BE∥AC.
(1)求证:△ABC≌△DEB;
(1)连结AD、AE、CE,如图1.
①求证:CE是∠ACB的角平分线;
②请判断△ABE是什么特殊形状的三角形,并说明理由.
20.(8分)如图,在Rt△ABC中,∠ACB=90°,两直角边AC=8cm,BC=6cm.
(1)作∠BAC的平分线AD交BC于点D;(尺规作图,不写作法,保留作图痕迹)
(2)计算△ABD的面积.
21.(8分) “构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:
实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由
S四边形ABCD=S△ABC+S△ADE+S△ABE得,化简得:
实例二:欧几里得的《几何原本》记载,关于x的方程的图解法是:
画Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜边AB上截取BD=,则AD的长就是该方程的一个正根(如实例二图)
请根据以上阅读材料回答下面的问题:
(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是 ,乙图要证明的数学公式是
(2)如图2,若2和-8是关于x的方程x2+6x=16的两个根,按照实例二的方式构造Rt△ABC,连接CD,求CD的长;
(3)若x,y,z都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.
22.(10分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买种图书花费了3000元,购买种图书花费了1600元,A种图书的单价是种图书的1.5倍,购买种图书的数量比种图书多20本.
(1)求和两种图书的单价;
(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了种图书20本和种图书25本,共花费多少元?
23.(10分)(1)计算:
(2)因式分解:
24.(10分)如图,四边形中,,,,是四边形内一点,是四边形外一点,且,,
(1)求证:;
(2)求证:.
25.(12分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.
(1)求直线l1的解析式;
(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;
(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.
26.已知:直线,为图形内一点,连接,.
(1)如图①,写出,,之间的等量关系,并证明你的结论;
(2)如图②,请直接写出,,之间的关系式;
(3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】利用二次根式的加减法对、进行判断;根据二次根式的乘法法则对进行判断;利用完全平方公式对进行判断.
【详解】解:、,所以选项错误;
、,所以选项错误;
、,所以选项正确;
、,所以选项错误.
故选:.
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
2、D
【分析】根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理即可解答.
【详解】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理,得
(x-2)2+x2=(x+2)2,
x2-4x+4+x2=x2+4x+4,
x2-8x=0,
x(x-8)=0,
解得x=8或0(0不符合题意,应舍去),
所以它的三边是6,8,1.
故选:D.
【点睛】
本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.
3、A
【解析】因为在直角三角形中, ∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:
故得:
DB=,,根据折叠的性质得:
,
故△EDB为直角三角形,又因为,故DE=DBtan30°=cm,
故答案选A.
4、A
【分析】若是假命题,则成立 ,所以
【详解】
选A
【点睛】
掌握原题的假命题,并证明假命题的成立所需要的条件,并利用不等式的变号法则来求证
5、D
【分析】熟记反证法的步骤,直接选择即可.
【详解】根据反证法的步骤,第一步应假设结论的反面成立,
即假设三角形中没有一个内角小于或等于60°.
故选D.
【点睛】
此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.
6、C
【分析】根据完全平方公式、三角形的稳定性、内心的性质、零指数幂的运算及角平分线的判定定理即可求解.
【详解】①若是完全平方式,则k=±3,故错误;
②工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,正确;
③在三角形内部到三边距离相等的点是三个内角平分线的交点,正确;
④当时,正确;
⑤若点P在∠AOB内部,D,E分别在∠AOB的两条边上, PD=PE,点P不一定在∠AOB的平分线上,故错误;
故选C.
【点睛】
此题主要考查完全平方公式、三角形的稳定性、内心的性质、零指数幂的运算及角平分线的判定定理,解题的关键是熟知其特点及性质.
7、A
【解析】设点C所对应的实数是.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解.数轴上两点间的距离等于数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.
设点C所对应的实数是.
则有
x=
故选A.
8、C
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】将27700000用科学记数法表示为2.77×107,
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、D
【分析】设用x块板材做桌子,用y块板材做椅子,根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.
【详解】设用x块板材做桌子,用y块板材做椅子,
∵用100块这种板材生产一批桌椅,
∴x+y=120 ①,
生产了x张桌子,4y把椅子,
∵使得恰好配套,1张桌子4把椅子,
∴2x=4y②,
①和②联立得:
,
故选:D.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.
10、B
【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断,即可得出答案.
【详解】解:、把分式方程化为整式方程,这个整式方程的解不一定是这个分式方程的解,故本选项错误;
、分式方程中,分母中一定含有未知数,故本选项正确;
、根据分式方程必须具备两个条件:①分母含有未知数;②是等式,故本选项错误;
、分式方程不一定有解,故本选项错误;
故选:B.
【点睛】
此题考查了分式方程的定义,判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).
11、C
【分析】由可得答案.
【详解】解:①,
②
①+②得:
故选C.
【点睛】
本题考查了完全平方公式的应用,掌握两个完全平方公式的结合变形是解题的关键.
12、D
【分析】根据同底数幂的乘法,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.
【详解】解:A.应为x2•x4=x6,故本选项错误;
B.应为x6÷x3=x3,故本选项错误;
C.2a2与3a3不是同类项,不能合并,故本选项错误;
D.(2x3)2=4x6,正确.
故选:D.
【点睛】
本题考查合并同类项,同底数幂的乘法和除法、积的乘方,熟练掌握运算法则是解题的关键.注意掌握合并同类项时,不是同类项的一定不能合并.
二、填空题(每题4分,共24分)
13、ab1
【分析】最简公分母是按照相同字母取最高 次幂,所有不同字母都写在积里,则易得分式与的最简公分母为ab1.
【详解】∵和中,字母a的最高次幂是1,字母b的最高次幂是1,
∴分式与的最简公分母为ab1,
故答案为ab1
【点睛】
本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
14、
【分析】根据题意,利用不等式组取解集的方法即可得到m的范围.
【详解】解:由题知不等式为,
∵不等式有解,
∴,
∴,
故答案为.
【点睛】
此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.
15、二、四.
【解析】试题解析:根据关联点的特征可知:
如果一个点在第一象限,它的关联点在第三象限.
如果一个点在第二象限,它的关联点在第二象限.
如果一个点在第三象限,它的关联点在第一象限.
如果一个点在第四象限,它的关联点在第四象限.
故答案为二,四.
16、36
【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.
【详解】连接BD.
∵∠A=90°,AB=3,DA=4,
∴BD==5
在△BCD中,
∵BD=5,CD=12,BC=13, ,即,
∴△BCD是直角三角形,
∴==,
故答案为:36.
【点睛】
此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.
17、2.57×10−1
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】=2.57×10−1.
故答案为:2.57×10−1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
18、
【分析】根据题意,由等腰三角形的性质可得BD是AE的垂直平分线,进而得到AD=ED,求出的度数即可得到关于的函数表达式.
【详解】∵是的角平分线,
∴,
∴
∴
∴
∴
∴
∵,
∴
∴
∵
∴
∴,
故答案为:.
【点睛】
本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.
三、解答题(共78分)
19、(1)详见解析;(1)①详见解析;②△ABE是等腰三角形,理由详见解析.
【解析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(1)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.
【详解】(1)∵∠ACB=90°,BE∥AC
∴∠CBE=90°
∴△ABC和△DEB都是直角三角形
∵AC=BC,点D为BC的中点
∴AC=BD
又∵AB=DE
∴△ABC≌△DEB(H.L.)
(1)①由(1)得:△ABC≌△DEB
∴BC=EB
又∵∠CBE=90°
∴∠BCE=45°
∴∠ACE=90°-45°=45°
∴∠BCE=∠ACE
∴CE是∠ACB的角平分线
②△ABE是等腰三角形,理由如下:
在△ACE和△DCE中
∴△ACE≌△DCE(SAS).
∴AE=DE
又∵AB=DE
∴AE=AB
∴△ABE是等腰三角形
【点睛】
本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.
20、(1)详见解析;(2).
【分析】(1)利用尺规作出∠CAB的角平分线即可;
(2)作DE⊥AB,垂足为E.设CD=DE=x,在Rt△DEB中,利用勾股定理构建方程即可解决问题.
【详解】解:(1)作图如下:
AD是∠ABC的平分线.
(2)在Rt△ABC中,由勾股定理得:
AB===10,
作DE⊥AB,垂足为E.
∵∠ACB=90°,AD是∠ABC的平分线,
∴CD=DE,
设CD=DE=x,
∴DB=6﹣x,
∵∠C=∠AED=90°,AD=AD,DC=DE,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE=8,
∴EB=AB﹣AE=10﹣8=2,
在Rt△DBE中由勾股定理得:x2+22=(6﹣x)2
解方程得x=,
∴S=AB•DE=.
【点睛】
本题考查了角平分线作图、角平分线的性质、全等三角形的判定与性质及勾股定理,灵活利用角平分线的性质添加辅助线是解题的关键.
21、(1)完全平方公式;平方差公式;(2);(3)
【分析】(1)利用面积法解决问题即可;
(2)如图2,作于点H,由题意可得出,利用面积求出的长,再利用勾股定理求解即可;
(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形,当时定值,z最小时,的值最大值.易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,据此求解即可.
【详解】解:(1)图1中甲图大正方形的面积
乙图中大正方形的面积
即
∴甲图要证明的数学公式是完全平方公式,乙图要证明的公式是平方差公式;
故答案为:完全平方公式;平方差公式;
(2)如图2,作于点H,
根据题意可知,
根据三角形的面积可得:
解得:
根据勾股定理可得:
根据勾股定理可得:;
(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形
当时定值,z最小时,的值最大值
易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,
∴的最大值为.
【点睛】
本题属于三角形综合题,考查了正方形的性质、解直角三角形、完全平方公式、平方差公式、勾股定理等知识点,解此题的关键是理解题意,会用面积法解决问题,学会数形结合的思想解决问题.
22、(1)种图书的单价为30元,种图书的单价为20元;(2)共花费880元.
【分析】(1)设种图书的单价为元,则种图书的单价为元,根据数量=总价÷单价结合花3000元购买的种图书比花1600元购买的种图书多20本,即可得出关于的分式方程,解之经检验后即可得出结论;
(2)根据总价=单价×数量,即可求出结论.
【详解】(1)设种图书的单价为元,则种图书的单价为元,
依题意,得:,
解得:,
经检验,是所列分式方程的解,且符合题意,
∴.
答:种图书的单价为30元,种图书的单价为20元.
(2)(元).
答:共花费880元.
【点睛】
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
23、(1) (2)
【分析】(1)先将同底数的幂相乘后,再合并同类项;
(2)先将公因式y提出来后,是个完全平方式,可继续进行因式分解.
【详解】(1)原式
(2)原式
【点睛】
本题较易,关键在于把握因式分解的概念,把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解.
24、(1)证明见解析;(2)证明见解析
【分析】(1)证明即可得到结论;
(2)证明即可.
【详解】(1)延长、交于点.
,,
.
(2),
;
,
,
,
同理可得:.
又,
,
.
【点睛】
此题主要考查了平行线的判定以及全等三角形的判定与性质,灵活作出辅助线是解题的关键.
25、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)
【分析】(1)根据待定系数法可得直线l1的解析式;
(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;
(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.
【详解】解:(1)y=k1x+6,
当x=0时,y=6,
∴OB=6,
∵OB=OA,
∴OA=2,
∴A(﹣2,0),
把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,
k1=,
∴直线l1的解析式为:y=x+6;
(2)如图1,过C作CH⊥x轴于H,
∵C(,1),
∴OH=,CH=1,
Rt△ABO中,,
∴AB=2OA,
∴∠OBA=30°,∠OAB=60°,
∵CD⊥AB,
∴∠ADE=90°,
∴∠AED=30°,
∴EH=,
∴OE=OH+EH=2,
∴E(2,0),
把E(2,0)和C(,1)代入y=k2x+b中得:,
解得:,
∴直线l2:y=x+2,
∴F(0,2)即BF=6﹣2=4,
则,解得,
∴D(﹣,3),
∴S△BCD=BF(xC﹣xD)=;
(3)分四种情况:
①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,
∵△QCD是以CD为底边的等腰直角三角形,
∴∠CQD=90°,CQ=DQ,
∴∠DMQ=∠CNQ=90°,
∴∠MDQ=∠CQN,
∴△DMQ≌△QNC(AAS),
∴DM=QN,QM=CN=,
设D(m,m+6)(m<0),则Q(0,﹣m+1),
∴OQ=QN+ON=OM+QM,
即﹣m+1=m+6+,
,
∴Q(0,2);
②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,
同理得:△DMQ≌△QNC(AAS),
∴DM=QN,QM=CN=1,
设D(m,m+6)(m<0),则Q(m+1,0),
∴OQ=QN﹣ON=OM﹣QM,
即m+6-=﹣m﹣1,
m=5﹣4,
∴Q(6﹣4,0);
③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,
同理得:△DMQ≌△QNC(AAS),
∴DM=QN,QM=CN=1,
设D(m,m+6)(m<0),则Q(m﹣1,0),
∴OQ=QN﹣ON=OM+QM,
即﹣m﹣6﹣=﹣m+1,
m=﹣4﹣5,
∴Q(﹣4﹣6,0);
④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,
同理得:△DMQ≌△QNC(AAS),
∴DM=QN,QM=CN=,
设D(m,m+6)(m<0),则Q(0,m+1),
∴OQ=QN﹣ON=OM+QM,
即﹣m﹣6+=﹣m﹣1,
m=﹣2﹣1,
∴Q(0,﹣2);
综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).
【点睛】
本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.
26、(1),见解析;(2);(3),见解析
【分析】(1)如图①,延长交于点,根据两直线平行,内错角相等可得,再根据三角形外角的性质即可得解;
(2)如图②中,过P作PG∥AB,利用平行线的性质即可解决问题;
(3) 如图③,在利用外角的性质以及两直线平行,内错角相等的性质,即可得出.
【详解】证明:(1)如图①,延长交于点.
在中则有.
(三角形一个外角等于和它不相邻的两个内角的和)
又,
(两直线平行,内错角相等)
.
.
(图①) (图②)
(2)如图②中,过P作PG∥AB,
∵AB//CD
∴PG//CD
∵AB//PG
∴∠ABP+∠BPG=180°
∵PG//CD
∴∠GPD+∠PDC=180°
∴∠ABP+∠BPG +∠GPD+∠PDC =360°
∴
故答案为:.
(3)如图③.证明如下:
(图③)
在中则有.(三角形一个外角等于和它不相邻的两个内角的和)
又,
(两直线平行,内错角相等)
.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.
辽宁省锦州市滨海期实验学校2023-2024学年八年级数学第一学期期末教学质量检测试题【含解析】: 这是一份辽宁省锦州市滨海期实验学校2023-2024学年八年级数学第一学期期末教学质量检测试题【含解析】,共18页。
辽宁省锦州市滨海期实验学校2023-2024学年八年级数学第一学期期末教学质量检测试题【含解析】: 这是一份辽宁省锦州市滨海期实验学校2023-2024学年八年级数学第一学期期末教学质量检测试题【含解析】,共18页。试卷主要包含了考生必须保证答题卡的整洁,8的立方根是,甲、乙两车从城出发匀速行驶至城等内容,欢迎下载使用。
辽宁省锦州市2023年数学八年级第一学期期末复习检测模拟试题【含解析】: 这是一份辽宁省锦州市2023年数学八年级第一学期期末复习检测模拟试题【含解析】,共19页。