四川省宜宾市2024届高三下学期高考适应性考试(三模)文科数学试卷(原卷版)
展开(考试时间:120分钟 全卷满分:150分)
注意事项:
1.答卷前,考生务必用黑色签字笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
3.考试结束后,将答题卡交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.
1. 已知集合,,则( )
A. B. C. D.
2. 已知复数z满足且是z的共轭复数,则( )
A. B. 1C. D.
3. 已知一组数据,,,,的平均数是,方差是,则对于以下数据:,,,,下列选项正确的是( )
A. 平均数是,方差是6B. 平均数是,方差是
C. 平均数是5,方差是D. 平均数是5,方差是12
4. 若曲线的一条切线方程是,则( )
A. B. 1C. D. e
5. 明朝数学家程大位著的《算法统宗》里有一道著名的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大、小和尚各几丁?”如图所示的程序框图反映了此题的一个算法,执行图中的程序框图,则输出n=( )
A. 72B. 75C. 78D. 80
6. 下列各式中,正确的是( )
A. B.
C. D.
7. 某零售行业为了解宣传对销售额的影响,在本市内随机抽取了5个大型零售卖场,得到其宣传费用x(单位:万元)和销售额y(单位:万元)的数据如下:
由统计数据知y与x满足线性回归方程,其中,当宣传费用时,销售额y的估计值为( )
A 89.5B. 90.5C. 92.5D. 94.5
8. 已知函数在上单调递减且对任意x∈R满足,则不等式的解集是( )
A. B. C. 1,+∞D. 1,4
9. 在直三棱柱中,,,点P在四边形内(含边界)运动,当时,点P的轨迹长度为,则该三棱柱的表面积为( )
A. 4B. C. D.
10. 已知抛物线C:,过动点P作两条相互垂直的直线,分别与抛物线C相切,则点P的轨迹是( )
A. 一条抛物线B. 一个圆C. 一条直线D. 一段线段
11. 定义在上的单调函数,对任意的有恒成立,若方程有两个不同的实数根,则实数的取值范围为( )
A. B. C. D.
12. 已知E,F分别是棱长为2的正四面体的对棱的中点.过的平面与正四面体相截,得到一个截面多边形,则下列说法正确的是( )
A. 截面多边形不可能是平行四边形B. 截面多边形的周长是定值
C. 截面多边形的周长的最小值是D. 截面多边形的面积的取值范围是
二、填空题:本大题共4个小题,每小题5分,共20分.
13. 若,则的最小值为______.
14. 已知数列是公差不为0的等差数列,,且满足成等比数列,则数列前6项的和为__________.
15. 已知为双曲线的左、右焦点,为双曲线右支上任意一点,点的坐标为.若有最大值,则双曲线的离心率的取值范围是__________.
16. 已知点O,A,B,C均在同一平面内,,,,当取最大值时,______.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必做题:共60分.
17. 某地为调查年龄在35―50岁段人群每周的运动情况,从年龄在35―50岁段人群中随机抽取了200人的信息,将调查结果整理如下:
(1)根据以上信息,能否有99%把握认为该地年龄在35―50岁段人群每周运动超过2小时与性别有关?
(2)在以上被抽取且每周运动不超过2小时的人中,按性别进行分层抽样,共抽6人.再从这6人中随机抽取2人进行访谈,求这2人中至少有1人是女性的概率.
参考公式:,.
18 已知数列满足.
(1)证明:数列是等比数列,并求出数列的通项公式;
(2)设,数列的前项和为,若对于任意恒成立,求实数的取值范围.
19. 如图,在四棱锥中,底面是正方形,,,,点E为线段的中点,点F在线段AB上,且.
(1)求证:;
(2)求三棱锥的体积.
20. 已知函数.
(1)当时,求函数过原点的切线方程;
(2)若有三个零点,求a的取值范围.
21. 已知椭圆E:左右焦点分别为,,过焦点斜率为的直线与椭圆E交于A,B两点,过焦点斜率为的直线与椭圆E交于C,D两点,且.
(1)求直线与的交点N的轨迹M的方程;
(2)若直线OA,OB,OC,OD斜率分别为,,,,问在(1)的轨迹M上是否存在点P,满足,若存在,求出点P坐标;若不存在,说明理由.
(二)选做题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.
[选修4-4:坐标系与参数方程]
22. 在平面直角坐标系中,过点的直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.直线与曲线相交于两点.
(1)求直线的普通方程及曲线的直角坐标方程;
(2)若成等比数列,求实数的值.
[选修4-5:不等式选讲]
23. 已知函数.
(1)求的最小值;
(2)若恒成立,求实数的取值范围.x(万元)
3
4
5
6
7
y(万元)
45
50
60
65
70
女性
男性
每周运动超过2小时
60
80
每周运动不超过2小时
40
20
0.10
0.05
0.025
0.010
0.001
2.706
3.841
5.024
6635
10.828
四川省宜宾市2024届高三下学期高考适应性考试(三模)文科数学试卷(原卷版+解析版): 这是一份四川省宜宾市2024届高三下学期高考适应性考试(三模)文科数学试卷(原卷版+解析版),文件包含四川省宜宾市2024届高三下学期高考适应性考试三模文科数学试卷原卷版docx、四川省宜宾市2024届高三下学期高考适应性考试三模文科数学试卷解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
四川省宜宾市2024届高三下学期高考适应性考试(三模)文科数学试卷: 这是一份四川省宜宾市2024届高三下学期高考适应性考试(三模)文科数学试卷,共5页。
四川省成都石室中学2024届高三高考适应性考试(一) 文科数学试题(原卷版+解析版): 这是一份四川省成都石室中学2024届高三高考适应性考试(一) 文科数学试题(原卷版+解析版),共30页。试卷主要包含了考生必须保证答题卡的整洁, 函数的大致图像是等内容,欢迎下载使用。