2025版高考数学一轮复习微专题小练习专练49排列与组合
展开一、选择题
1.某数学问题可用综合法和分析法两种方法证明;有5位同学只会用综合法证明,有3位同学只会用分析法证明,现从这8人中任选1人证明这个问题,不同的选法种数为( )
A.8 B.15 C.18 D.30
答案:
答案:A
解析:由分类加法计数原理可知共有5+3=8种不同的选法.
2.[2023·全国甲卷(理)]现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( )
A.120种 B.60种 C.30种 D.20种
答案:B
解析:先从5人中选择1人两天均参加公益活动,有C eq \\al(\s\up1(1),\s\d1(5)) 种方式;再从余下的4人中选2人分别安排到星期六、星期日,有A eq \\al(\s\up1(2),\s\d1(4)) 种安排方式.所以不同的安排方式共有C eq \\al(\s\up1(1),\s\d1(5)) ·A eq \\al(\s\up1(2),\s\d1(4)) =60(种).故选B.
3.从包括甲、乙、丙在内的10名大学毕业生中选3人担任村长助理,则甲、乙中至少有1人入选,而丙没有入选的不同选法种数为( )
A.85 B.56 C.49 D.28
答案:C
4.[2024·九省联考]甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间恰有2人,则不同排法共有( )
A.20种 B.16种 C.12种 D.8种
答案:B
解析:先排甲,再排乙和丙,则有:
共有16种.故选B.
5.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )
A.12种 B.18种 C.24种 D.36种
答案:D
解析:将4项工作分成3组,共有C eq \\al(\s\up1(2),\s\d1(4)) 种分法,再安排给3人共有A eq \\al(\s\up1(3),\s\d1(3)) 种方法,故共有C eq \\al(\s\up1(2),\s\d1(4)) A eq \\al(\s\up1(3),\s\d1(3)) =36种不同的安排方式.
6.甲、乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )
A.30种 B.60种 C.120种 D.240种
答案:C
解析:甲、乙二人先选1种相同的课外读物,有C eq \\al(\s\up1(1),\s\d1(6)) =6(种)情况,再从剩下的5种课外读物中各自选1本不同的读物,有C eq \\al(\s\up1(1),\s\d1(5)) C eq \\al(\s\up1(1),\s\d1(4)) =20(种)情况,由分步乘法计数原理可得共有6×20=120(种)选法,故选C.
7.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法有( )
A.34种 B.48种 C.96种 D.144种
答案:C
解析:将B,C看作一个元素,除A外,共有A eq \\al(\s\up1(4),\s\d1(4)) A eq \\al(\s\up1(2),\s\d1(2)) =48种,再安排A,共有A eq \\al(\s\up1(2),\s\d1(2)) 种不同的排法,∴实验顺序共有48×2=96种不同的编排方法.
8.7个人排成一排,若甲、乙、丙互不相邻,共有不同的排法种数是( )
A.24 B.60 C.84 D.1 440
答案:D
解析:完成这件事分两步进行,第一步排除甲、乙、丙以外的4个人,共有A eq \\al(\s\up1(4),\s\d1(4)) =24种不同的排法,第二步排除甲、乙、丙,共有A eq \\al(\s\up1(3),\s\d1(5)) =60种不同的排法,由分步乘法原理,共有24×60=1 440种不同的排法.
9.由0,1,2,3,4,5,6,7,8,9组成没有重复数字的五位数,且是奇数,其中恰有两个数字是偶数,则这样的五位数的个数为( )
A.7 200 B.6 480 C.4 320 D.5 040
答案:B
解析:当两个偶数数字中不含0时,共有C eq \\al(\s\up1(2),\s\d1(4)) C eq \\al(\s\up1(3),\s\d1(5)) C eq \\al(\s\up1(1),\s\d1(3)) A eq \\al(\s\up1(4),\s\d1(4)) =4 320(个);当两个偶数数字中有一个为0时,共有C eq \\al(\s\up1(1),\s\d1(3)) C eq \\al(\s\up1(1),\s\d1(4)) C eq \\al(\s\up1(3),\s\d1(5)) C eq \\al(\s\up1(1),\s\d1(3)) A eq \\al(\s\up1(3),\s\d1(3)) =2 160(个).因此共有4 320+2 160=6 480(个),故选B.
二、填空题
10.从6个人中选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有________种安排方法.
答案:180
解析:从6个人中选取1个人安排在第一天有C eq \\al(\s\up1(1),\s\d1(6)) =6(种)方法,然后从余下的5个人中选取1个人安排在第二天有C eq \\al(\s\up1(1),\s\d1(5)) =5(种)方法,再从剩余的4个人中选取2个人安排在第三天有C eq \\al(\s\up1(2),\s\d1(4)) =6(种)方法,根据分步乘法计数原理知不同的安排方法有6×5×6=180(种).
11.[2023·新课标Ⅰ卷]某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).
答案:64
解析:方法一 由题意,可分三类:第一类,体育类选修课和艺术类选修课各选修1门,有C eq \\al(\s\up1(1),\s\d1(4)) C eq \\al(\s\up1(1),\s\d1(4)) 种方案;第二类,在体育类选修课中选修1门,在艺术类选修课中选修2门,有C eq \\al(\s\up1(1),\s\d1(4)) C eq \\al(\s\up1(2),\s\d1(4)) 种方案;第三类,在体育类选修课中选修2门,在艺术类选修课中选修1门,有C eq \\al(\s\up1(2),\s\d1(4)) C eq \\al(\s\up1(1),\s\d1(4)) 种方案.综上,不同的选课方案共有C eq \\al(\s\up1(1),\s\d1(4)) C eq \\al(\s\up1(1),\s\d1(4)) +C eq \\al(\s\up1(1),\s\d1(4)) C eq \\al(\s\up1(2),\s\d1(4)) +C eq \\al(\s\up1(2),\s\d1(4)) C eq \\al(\s\up1(1),\s\d1(4)) =64(种).
方法二 若学生从这8门课中选修2门课,则有C eq \\al(\s\up1(2),\s\d1(8)) -C eq \\al(\s\up1(2),\s\d1(4)) -C eq \\al(\s\up1(2),\s\d1(4)) =16(种)选课方案;若学生从这8门课中选修3门课,则有C eq \\al(\s\up1(3),\s\d1(8)) -C eq \\al(\s\up1(3),\s\d1(4)) -C eq \\al(\s\up1(3),\s\d1(4)) =48(种)选课方案.综上,不同的选课方案共有16+48=64(种).
12.[2024·新课标Ⅱ卷]在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法.在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.
答案:24 112
解析:共选4个方格:选第1个方格,在16个方格中任选1个,有16种选法;
选第2个方格,需在除去所选第1个方格所在行、列的方格(共9个)中任选1个,有9种选法;
选第3个方格,需在除去所选的第1和第2个方格所在行、列的方格(共4个)中任选1个,有4种选法;
选第4个方格,需在除去所选的第1、第2和第3个方格所在行、列的方格(共1个)中任选1个,有1种选法.
对于选好的4个方格无顺序限制,所以不同的选法有 eq \f(16×9×4×1,4!)=24(种).
由题图可知,各行的数从左往右均依次增大,各列的数从上往下依次增大或不变,所以要使选中方格的4个数之和最大,可从右往左从各列中选数字较大的方格,所选方格中的数为44,33,22, 11和44,33,21,13,其和分别为110和111.
又因为从左往右各列数字的极差分别为4,3,3,4,所以按极差从大到小各列选15,43,33,21,其和为112.比较以上各数,最大的是112.
11
21
31
40
12
22
33
42
13
22
33
43
15
24
34
44
2025版高考数学一轮复习微专题小练习专练45椭圆: 这是一份2025版高考数学一轮复习微专题小练习专练45椭圆,共6页。
2025版高考数学一轮复习微专题小练习专练28复数: 这是一份2025版高考数学一轮复习微专题小练习专练28复数,共4页。
2025版高考数学一轮复习微专题小练习专练18高考大题专练一导数的应用: 这是一份2025版高考数学一轮复习微专题小练习专练18高考大题专练一导数的应用,共7页。试卷主要包含了[2023·新课标Ⅱ卷]证明等内容,欢迎下载使用。