|试卷下载
搜索
    上传资料 赚现金
    2024年中考真题—四川省遂宁市数学试题(解析版)
    立即下载
    加入资料篮
    2024年中考真题—四川省遂宁市数学试题(解析版)01
    2024年中考真题—四川省遂宁市数学试题(解析版)02
    2024年中考真题—四川省遂宁市数学试题(解析版)03
    还剩24页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考真题—四川省遂宁市数学试题(解析版)

    展开
    这是一份2024年中考真题—四川省遂宁市数学试题(解析版),共27页。

    试卷满分150分 考试时间120分钟
    注意事项:
    1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并检查条形码粘贴是否正确.
    2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)
    1. 下列各数中,无理数是( )
    A. B. C. D. 0
    【答案】C
    【解析】
    【分析】本题考查了无理数的概念,根据无限不循环小数为无理数即可求解,解答本题的关键是掌握无理数的三种形式:1、开方开不尽的数, 2、无限不循环小数,3、含有的数.
    【详解】解: ,,0都是有理数,是无理数,
    故选:C.
    2. 古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用,右图是某个部件“榫”的实物图,它的主视图是( )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】本题考查了三视图,根据从正面看到的图形即可求解,掌握三视图的画法是解题的关键.
    【详解】解:由实物图可知,从从正面看到的图形是,
    故选:.
    3. 中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达.将销售数据用科学记数法表示为( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】此题考查了科学记数法的表示方法,根据科学记数法的表示形式为的形式,其中,为整数即可求解,解题的关键要正确确定的值以及的值.
    【详解】解:万,
    故选:.
    4. 下列运算结果正确的是( )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】本题考查了整式的运算,根据合并同类项法则、同底数幂的乘法、积的乘方运算、平方差公式分别运算即可判断求解,掌握整式的运算法则是解题的关键.
    【详解】解:、,该选项错误,不合题意;
    、,该选项错误,不合题意;
    、,该选项错误,不合题意;
    、,该选项正确,符合题意;
    故选:.
    5. 不等式组的解集在数轴上表示为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】本题考查了在数轴上表示不等式组的解集,先求出不等式组的解集,再根据解集在数轴上表示出来即可判断求解,正确求出一元一次不等式组的解集是解题的关键.
    【详解】解:,
    由得,,
    由得,,
    ∴不等式组的解集为,
    ∴不等式组的解集在数轴上表示为,
    故选:.
    6. 佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为正多边形图案,这个正多边形的每个外角为( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】本题考查了正多边形的外角,设这个正多边形的边数为,先根据内角和求出正多边形的边数,再用外角和除以边数即可求解,掌握正多边形的性质是解题的关键.
    【详解】解:设这个正多边形的边数为,
    则,
    ∴,
    ∴这个正多边形的每个外角为,
    故选:.
    7. 分式方程的解为正数,则的取值范围( )
    A. B. 且
    C. D. 且
    【答案】B
    【解析】
    【分析】本题考查了解分式方程及分式方程的解,先解分式方程,求出分式方程的解,再根据分式方程解的情况解答即可求解,正确求出分式方程的解是解题的关键.
    【详解】解:方程两边同时乘以得,,
    解得,
    ∵分式方程的解为正数,
    ∴,
    ∴,
    又∵,
    即,
    ∴,
    ∴的取值范围为且,
    故选:.
    8. 工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽为米,请计算出淤泥横截面的面积( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】本题考查了垂径定理,勾股定理,等边三角形的判定和性质,求不规则图形的面积,过点作于,由垂径定理得,由勾股定理得,又根据圆的直径为米可得,得到为等边三角形,即得,再根据淤泥横截面的面积即可求解,掌握垂径定理及扇形面积计算公式是解题的关键.
    【详解】解:过点作于,则,,
    ∵圆直径为米,
    ∴,
    ∴在中,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴淤泥横截面的面积,
    故选:.
    9. 如图1,与满足,,,,我们称这样的两个三角形为“伪全等三角形”如图2,在中,,点在线段上,且,则图中共有“伪全等三角形”( )
    A. 1对B. 2对C. 3对D. 4对
    【答案】D
    【解析】
    【分析】本题考查了新定义,等边对等角,根据“伪全等三角形”的定义可得两个三角形的两边相等,一个角相等,且这个角不是夹角,据此分析判断,即可求解.
    【详解】解:∵,
    ∴,
    在和中,,
    在中,,
    中,,
    在中,
    综上所述,共有4对“伪全等三角形”,
    故选:D.
    10. 如图,已知抛物线(a、b、c为常数,且)的对称轴为直线,且该抛物线与轴交于点,与轴的交点在,之间(不含端点),则下列结论正确的有多少个( )
    ①;
    ②;
    ③;
    ④若方程两根为,则.
    A. 1B. 2C. 3D. 4
    【答案】B
    【解析】
    【分析】本题主要考查二次函数和一次函数的性质,根据题干可得,,,即可判断①错误;根据对称轴和一个交点求得另一个交点为,即可判断②错误;将c和b用a表示,即可得到,即可判断③正确;结合抛物线和直线与轴得交点,即可判断④正确.
    【详解】解:由图可知,
    ∵抛物线的对称轴为直线,且该抛物线与轴交于点,
    ∴,,
    则,
    ∵抛物线与轴的交点在,之间,
    ∴,
    则,故①错误;
    设抛物线与轴另一个交点,
    ∵对称轴为直线,且该抛物线与轴交于点,
    ∴,解得,
    则,故②错误;
    ∵,,,
    ∴,解得,故③正确;
    根据抛物线与轴交于点和,直线过点和,如图,
    方程两根为满足,故④正确;
    故选:B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    11. 分解因式:______.
    【答案】
    【解析】
    【分析】本题主要考查了提公因式分解因式,提公因式a即可解答.
    【详解】解:
    故答案为:
    12. 反比例函数的图象在第一、三象限,则点在第______象限.
    【答案】四##
    【解析】
    【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出,进而即可求解.
    【详解】解:∵反比例函数的图象在第一、三象限,


    ∴点在第四象限,
    故答案为:四.
    13. 体育老师要在甲和乙两人中选择人参加篮球投篮大赛,下表是两人次训练成绩,从稳定的角度考虑,老师应该选______参加比赛.
    【答案】甲
    【解析】
    【分析】本题考查了方差,分别求出甲乙的方差即可判断求解,掌握方差计算公式是解题的关键.
    【详解】解:甲的平均数为,
    ∴,
    乙的平均数为,
    ∴,
    ∵,
    ∴甲成绩更稳定,
    ∴应选甲参加比赛,
    故答案为:甲.
    14. 在等边三边上分别取点,使得,连结三点得到,易得,设,则
    如图①当时,
    如图②当时,
    如图③当时,
    ……
    直接写出,当时,______.
    【答案】##0.73
    【解析】
    【分析】本题主要考查数字规律性问题,首先根据已知求得比例为n时,,代入即可.
    【详解】解:根据题意可得,当时,,
    则当时,,
    故答案为:.
    15. 如图,在正方形纸片中,是边的中点,将正方形纸片沿折叠,点落在点处,延长交于点,连结并延长交于点.给出以下结论:①为等腰三角形;②为的中点;③;④.其中正确结论是______.(填序号)
    【答案】①②③
    【解析】
    【分析】设正方形的边长为,,根据折叠的性质得出,根据中点的性质得出,即可判断①,证明四边形是平行四边形,即可判断②,求得,设,则,勾股定理得出,进而判断③,进而求得,,勾股定理求得,进而根据余弦的定义,即可判断④,即可求解.
    【详解】解:如图所示,
    ∵为的中点,

    设正方形的边长为,

    ∵折叠,
    ∴,

    ∴是等腰三角形,故①正确;
    设,




    又∵
    ∴四边形是平行四边形,
    ∴,
    ∴,即是的中点,故②正确;
    ∵,

    在中,,


    设,则,


    ∴,,
    ∴,故③正确;
    连接,如图所示,
    ∵,,



    又∵


    又∵





    在中,
    ∴,故④不正确
    故答案为:①②③.
    【点睛】本题考查了正方形与折叠问题,解直角三角形,全等三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.
    三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)
    16. 计算:.
    【答案】
    【解析】
    【分析】此题主要考查了实数运算及二次根式的运算,直接利用负整数指数幂的性质、特殊角的三角函数值、绝对值的性质、算术平方根分别化简得出答案,正确化简各数是解题关键.
    【详解】解:

    17. 先化简:,再从1,2,3中选择一个合适的数作为的值代入求值.
    【答案】;
    【解析】
    【分析】本题考查了分式化简求值;先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据分式有意义的条件,将字母的值代入求解.
    【详解】解:

    ∴当时,原式
    18. 康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.
    (1)实践与操作

    ①任意作两条相交的直线,交点记为O;
    ②以点为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段;
    ③顺次连结所得的四点得到四边形.
    于是可以直接判定四边形是平行四边形,则该判定定理是:______.
    (2)猜想与证明
    通过和同伴交流,他们一致认为四边形是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.
    已知:如图,四边形平行四边形,.求证:四边形是矩形.

    【答案】(1)对角线互相平分的四边形是平行四边形
    (2)证明见解析
    【解析】
    【分析】(1)由作图结合对角线互相平分的四边形是平行四边形可得答案;
    (2)先证明,再证明,可得,从而可得结论.
    【小问1详解】
    解:由作图可得:,,
    ∴四边形是平行四边形,
    该判定定理是:对角线互相平分的四边形是平行四边形;
    【小问2详解】
    ∵四边形是平行四边形,
    ∴,,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴四边形是矩形.
    【点睛】本题考查的是平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,掌握平行四边形与矩形的判定方法是关键.
    19. 小明的书桌上有一个型台灯,灯柱高,他发现当灯带与水平线夹角为时(图1),灯带的直射宽为,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为时(图2),直射宽度刚好合适,求此时台灯最高点到桌面的距离.(结果保留1位小数)()
    【答案】此时台灯最高点到桌面的距离为
    【解析】
    【分析】本题考查了解直角三角形的应用;在图1中,,在图2中求得,进而根据灯柱高,点到桌面的距离为,即可求解.
    【详解】解:由已知,,
    在图1中,


    ∴四边形是平行四边形,

    在中,
    在图2中,过点作于点,

    ∵灯柱高,
    点到桌面的距离为
    答:此时台灯最高点到桌面的距离为.
    20. 某酒店有两种客房、其中种间,种间.若全部入住,一天营业额为元;若两种客房均有间入住,一天营业额为元.
    (1)求两种客房每间定价分别是多少元?
    (2)酒店对种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加元,就会有一个房间空闲;当种客房每间定价为多少元时,种客房一天的营业额最大,最大营业额为多少元?
    【答案】(1)种客房每间定价为元,种客房每间定价为为元;
    (2)当种客房每间定价为元时,种客房一天的营业额最大,最大营业额为元.
    【解析】
    【分析】()设种客房每间定价为元,种客房每间定价为为元,根据题意,列出方程组即可求解;
    ()设种客房每间定价为元,根据题意,列出与的二次函数解析式,根据二次函数的性质即可求解;
    本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.
    【小问1详解】
    解:设种客房每间定价为元,种客房每间定价为为元,
    由题意可得,,
    解得,
    答:种客房每间定价为元,种客房每间定价为为元;
    【小问2详解】
    解:设种客房每间定价为元,
    则,
    ∵,
    ∴当时,取最大值,元,
    答:当种客房每间定价为元时,种客房一天的营业额最大,最大营业额为元.
    21. 已知关于的一元二次方程.
    (1)求证:无论取何值,方程都有两个不相等的实数根;
    (2)如果方程的两个实数根为,且,求的值.
    【答案】(1)证明见解析;
    (2)或.
    【解析】
    【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.
    (1)根据根的判别式证明恒成立即可;
    (2)由题意可得,,,进行变形后代入即可求解.
    【小问1详解】
    证明:,
    ∵无论取何值,,恒成立,
    ∴无论取何值,方程都有两个不相等的实数根.
    【小问2详解】
    解:∵是方程的两个实数根,
    ∴,,
    ∴,
    解得:或.
    22. 遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:
    【答案】(1),,;(2)见解析;(3);(4)
    【解析】
    【分析】本题考查了条形统计图与扇形统计图信息关联,样本估计总体,列表法求概率;
    (1)根据组的人数除以占比,即可得出总人数,进而求得组的人数,得出的值,根据的占比乘以,即可得出对应圆心角的度数;
    (2)根据组的人数补全统条形计图,
    (3)用乘以组的占比,即可求解.
    (4)用列表法求概率,即可求解.
    【详解】解:(1)本次被抽样调查的学生总人数为,
    组的人数为:,
    ∴,

    B:龙凤古镇”对应圆心角的度数是
    故答案为:,,.
    (2)根据(1)可得组人数为人,补全统计图,如图所示,
    (3)解:
    答:请你估计该学校学生“五一”假期未出游的人数为人;
    (4)列表如下,
    共有种等可能结果,其中他们选择同一景点的情形有种,
    ∴他们选择同一景点的概率为
    23. 如图,一次函数的图象与反比例函数的图象相交于两点.
    (1)求一次函数和反比例函数的表达式;
    (2)根据图象直接写出时,的取值范围;
    (3)过点作直线,交反比例函数图象于点,连结,求的面积.
    【答案】(1)反比例函数表达式为,一次函数表达式为
    (2)或
    (3)
    【解析】
    【分析】()利用待定系数法即可求解;
    ()根据函数图象即可求解;
    ()如图,设直线与轴相交于点,过点作轴于点,过点作轴于点,求出点坐标,再根据关于原点对称的点的坐标特征求出点坐标,根据计算即可求解;
    本题考查了一次函数与反比例函数的交点问题,反比例函数的性质,利用待定系数法求出函数解析式是解题的关键.
    【小问1详解】
    解:把代入得,,
    ∴,
    ∴反比例函数表达式为,
    把代入得,,
    ∴,
    ∴,
    把、代入得,

    解得,
    ∴一次函数表达式为;
    小问2详解】
    解:由图象可得,当时,的取值范围为或;
    【小问3详解】
    解:如图,设直线与轴相交于点,过点作轴于点,过点作轴于点,则,
    ∴,
    ∵点关于原点对称,
    ∴,
    ∴,,


    即的面积为.
    24. 如图,是的直径,是一条弦,点是的中点,于点,交于点,连结交于点.
    (1)求证:;
    (2)延长至点,使,连接.
    ①求证:是的切线;
    ②若,,求的半径.
    【答案】(1)证明见解析
    (2)①证明见解析,②的半径为.
    【解析】
    【分析】(1)如图,连接,证明,可得,证明,可得,进一步可得结论;
    (2)①证明,可得是的垂直平分线,可得,,,而,可得,进一步可得结论;②证明,可得,求解,,结合,可得答案.
    【小问1详解】
    证明:如图,连接,
    ∵点是的中点,
    ∴,
    ∴,
    ∵,为的直径,
    ∴,
    ∴,
    ∴,
    ∴.
    【小问2详解】
    证明:①∵为的直径,
    ∴,
    ∴,
    ∵,
    ∴是的垂直平分线,
    ∴,
    ∴,,
    而,
    ∴,
    ∴,
    ∴,
    ∵为的直径,
    ∴是的切线;
    ②∵,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴的半径为.
    【点睛】本题考查的是圆周角定理的应用,弧与圆心角之间的关系,切线的判定与性质,相似三角形的判定与性质,锐角三角函数的应用,做出合适的辅助线是解本题的关键.
    25. 二次函数的图象与轴分别交于点,与轴交于点,为抛物线上的两点.
    (1)求二次函数的表达式;
    (2)当两点关于抛物线对称轴对称,是以点为直角顶点的直角三角形时,求点的坐标;
    (3)设的横坐标为,的横坐标为,试探究:的面积是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.
    【答案】(1)
    (2)
    (3)存在,最小值为
    【解析】
    【分析】本题考查了二次函数的综合题,待定系数法求函数解析式,勾股定理,已知两点坐标表示两点距离,二次函数最值,熟练掌握知识点,正确添加辅助线是解题的关键.
    (1)用待定系数法求解即可;
    (2)可求,设,由,得,则
    ,解得,(舍去),故;
    (3)分当点P、Q在x轴下方,且点Q在点P上方时,当点P、Q在x轴下方,且点P在点Q上方时,当点P、Q都在x轴上方或者一个在x轴上方,一个在x轴下方,得到这个面积是关于m的二次函数,进而求最值即可.
    【小问1详解】
    解:把,代入得,
    ,解得,
    ∴二次函数的表达式为;
    【小问2详解】
    解:如图:
    由得抛物线对称轴为直线,
    ∵两点关于抛物线对轴对称,
    ∴,
    设,
    ∵,
    ∴,


    整理得,,
    解得,(舍去),
    ∴,
    ∴;
    【小问3详解】
    存在,理由:
    当点P、Q在x轴下方,且点Q在点P上方时,
    设点,则点,设直线交轴于点,
    设直线表达式为:,
    代入,
    得:,
    解得:,
    ∴直线的表达式为:,
    令,得
    则,
    则,


    即存在最小值为;
    当点P、Q在x轴下方,且点P在点Q上方时,
    同上可求直线表达式为:,
    令,得
    则,
    则,

    即存在最小值为;
    当点P、Q都在x轴上方或者一个在x轴上方,一个在x轴下方同理可求,
    即存在最小值为,
    综上所述,的面积是否存在最小值,且为.甲

    xx小组关于xx学校学生“五一”出游情况调查报告
    数据收集
    调查方式
    抽样调查
    调查对象
    xx学校学生
    数据的整理与描述
    景点
    A:中国死海
    B:龙凤古镇
    C:灵泉风景区
    D:金华山
    E:未出游
    F:其他
    数据分析及运用
    (1)本次被抽样调查的学生总人数为______,扇形统计图中,______,“:龙凤古镇”对应圆心角的度数是______;
    (2)请补全条形统计图;
    (3)该学校总人数为人,请你估计该学校学生“五一”假期未出游的人数;
    (4)未出游中的甲、乙两位同学计划下次假期从、、、四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.
    相关试卷

    2023年四川省遂宁市中考数学真题试卷(解析版): 这是一份2023年四川省遂宁市中考数学真题试卷(解析版),共30页。

    2023年四川省遂宁市中考数学真题(解析版): 这是一份2023年四川省遂宁市中考数学真题(解析版),共32页。

    2023年四川省遂宁市中考数学真题(解析版): 这是一份2023年四川省遂宁市中考数学真题(解析版),共32页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map