附1 几何变式探究和类比变换综合类问题
展开【方法指导】
图形的类比变换是近年来中考的常考点,常以三角形、四边形为背景,与翻折、旋转相结合,考查三角形全等或相似的性质与判定,难度较大.此类题目第一问相对简单,后面的问题需要结合第一问的方法进行类比解答.根据其特征大致可分为:几何变换类比探究问题、旋转综合问题、翻折类问题等.
解决此类问题要善于将复杂图象分解为几个基本图形,通过添加副主席补全或构造基本图形,借助转化、方程、数形结合、分类讨论等数学思想解决几何证明问题,计算则把几何与代数知识综合起来,渗透数形结合思想,考查学生分析问题的能力、逻辑思维和推理能力.
【题型剖析】
【类型1】几何类比变换综合题
【例1】(2020•襄阳)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.
(1)特例发现:如图1,当AD=AF时,
①求证:BD=CF;
②推断:∠ACE= 90 °;
(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;
(3)拓展运用:如图3,在(2)的条件下,当EFAF=13时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=163,求DF的长.
【分析】(1)①证明△ABD≌△ACF(AAS)可得结论.
②利用四点共圆的性质解决问题即可.
(2)结论不变.利用四点共圆证明即可.
(3)如图3中,连接EK.首先证明AB=AC=3EC,设EC=a,则AB=AC=3a,在Rt△KCE中,利用勾股定理求出a,再求出DP,PF即可解决问题.
【解析】(1)①证明:如图1中,
∵AB=AC,
∴∠B=∠ACF,
∵AD=AF,
∴∠ADF=∠AFD,
∴∠ADB=∠AFC,
∴△ABD≌△ACF(AAS),
∴BD=CF.
②结论:∠ACE=90°.
理由:如图1中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,
∴∠ACD=∠AED=45°,
∴A,D,E,C四点共圆,
∴∠ADE+∠ACE=180°,
∴∠ACE=90°.
故答案为90.
(2)结论:∠ACE=90°.
理由:如图2中,
∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,
∴∠ACD=∠AED=45°,
∴A,D,E,C四点共圆,
∴∠ADE+∠ACE=180°,
∴∠ACE=90°.
(3)如图3中,连接EK.
∵∠BAC+∠ACE=180°,
∴AB∥CE,
∴ECAB=EFAF=13,设EC=a,则AB=AC=3a,AK=3a-163,
∵DA=DE,DK⊥AE,
∴AP=PE,
∴AK=KE=3a-163,
∵EK2=CK2+EC2,
∴(3a-163)2=(163)2+a2,
解得a=4或0(舍弃),
∴EC=4,AB=AC=12,
∴AE=AC2+EC2=122+42=410,
∴DP=PA=PE=12AE=210,EF=14AE=10,
∴PF=EF=10,
∵∠DPF=90°,
∴DF=DP2+PF2=(210)2+(10)2=52.
【变式1-1】(2020•黔东南州)如图1,△ABC和△DCE都是等边三角形.
探究发现
(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.
拓展运用
(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.
(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.
【分析】(1)依据等式的性质可证明∠BCD=∠ACE,然后依据SAS可证明△ACE≌△BCD;
(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;
(3)如图2,过A作AF⊥CD于F,先根据平角的定义得∠ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得△ACD的面积,最后根据勾股定理可得AD的长.
【解析】(1)全等,理由是:
∵△ABC和△DCE都是等边三角形,
∴AC=BC,DC=EC,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△BCD和△ACE中,
CD=CE∠BCD=∠ACEBC=AC,
∴△ACE≌△BCD( SAS);
(2)如图3,由(1)得:△BCD≌△ACE,
∴BD=AE,
∵△DCE是等边三角形,
∴∠CDE=60°,CD=DE=2,
∵∠ADC=30°,
∴∠ADE=∠ADC+∠CDE=30°+60°=90°,
在Rt△ADE中,AD=3,DE=2,
∴AE=AD2+DE2=9+4=13,
∴BD=13;
(3)如图2,过A作AF⊥CD于F,
∵B、C、E三点在一条直线上,
∴∠BCA+∠ACD+∠DCE=180°,
∵△ABC和△DCE都是等边三角形,
∴∠BCA=∠DCE=60°,
∴∠ACD=60°,
在Rt△ACF中,sin∠ACF=AFAC,
∴AF=AC×sin∠ACF=1×32=32,
∴S△ACD=12×CD×AF=12×2×32=32,
∴CF=AC×cs∠ACF=1×12=12,
FD=CD﹣CF=2-12=32,
在Rt△AFD中,AD2=AF2+FD2=(32)2+(32)2=3,
∴AD=3.
【变式1-2】(2020•鞍山)在矩形ABCD中,点E是射线BC上一动点,连接AE,过点B作BF⊥AE于点G,交直线CD于点F.
(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.
①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是 相等 ,位置关系是 垂直 ;
②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;
(2)如图3,若点E在线段BC上,以BE和BF为邻边作平行四边形BEHF,M是BH中点,连接GM,AB=3,BC=2,求GM的最小值.
【分析】(1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;
②根据(1)中同样的证明方法求证即可;
(2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出EF=139x2-4x+4,求出最值即可得到GM的最小值.
【解析】(1)①∵四边形ABCD为正方形,
∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,
∵AE⊥BF,
∴∠CBF+∠AEB=90°,
∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,
∴△ABE≌△BCF(ASA),
∴BE=CF,AE=BF,
∵△FCH为等腰直角三角形,
∴FC=FH=BE,FH⊥FC,而CD⊥BC,
∴FH∥BC,
∴四边形BEHF为平行四边形,
∴BF∥EH且BF=EH,
∴AE=EH,AE⊥EH,
故答案为:相等;垂直;
②成立,理由是:
当点E在线段BC的延长线上时,
同理可得:△ABE≌△BCF(ASA),
∴BE=CF,AE=BF,
∵△FCH为等腰直角三角形,
∴FC=FH=BE,FH⊥FC,而CD⊥BC,
∴FH∥BC,
∴四边形BEHF为平行四边形,
∴BF∥EH且BF=EH,
∴AE=EH,AE⊥EH;
(2)∵∠EGF=∠BCD=90°,
∴C、E、G、F四点共圆,
∵四边形BEHF是平行四边形,M为BH中点,
∴M也是EF中点,
∴M是四边形GECF外接圆圆心,
则GM的最小值为圆M半径的最小值,
∵AB=3,BC=2,
设BE=x,则CE=2﹣x,
同(1)可得:∠CBF=∠BAE,
又∵∠ABE=∠BCF=90°,
∴△ABE∽△BCF,
∴ABBC=BECF,即32=xCF,
∴CF=2x3,
∴EF=CE2+CF2=139x2-4x+4,
设y=139x2-4x+4,
当x=1813时,y取最小值1613,
∴EF的最小值为41313,
故GM的最小值为21313.
【变式1-3】(2020•赤峰)如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊥PD,交直线AB于点E,过点P作MN⊥AB,交直线CD于点M,交直线AB于点N.AB=43,AD=4.
(1)如图1,①当点P在线段AC上时,∠PDM和∠EPN的数量关系为:∠PDM = ∠EPN;
②DPPE的值是 3 ;
(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.
【分析】(1)①利用等角的余角相等证明即可.
②证明∠CAB=30°,推出∠PDE=∠CAB=30°即可.
(2)结论成立.证明方法类似②.
(3)利用相似三角形的性质求出DM,利用勾股定理求出PD,再利用(2)中结论.求出PE,即可解决问题.
【解析】(1)①如图1中,
∵四边形ABCD是矩形,
∴AB∥CD,
∵NM⊥AB,
∴NM⊥CD,
∵DP⊥PE,
∴∠PMD=∠PNE=∠DPE=90°,
∴∠PDM+∠DPM=90°,∠DPM+∠EPN=90°,
∴∠PDM=∠EPN.
故答案为=.
②连接DE.∵四边形ABCD是矩形,
∴∠DAE=∠B=90°,AD=BC=4.
∴tan∠CAB=BCAB=33,
∴∠CAB=30°,
∵∠DAE+∠DPE=180°,
∴A,D,P,E四点共圆,
∴∠EDP=∠PAB=30°,
∴PEPD=tan30°=33,
∴PDPE=3.
(2)如图2中,结论成立.
理由:连接DE.
∵∠DPE=∠DAE=90°,
∴A,D,E,P四点共圆,
∴∠PDE=∠EAP=∠CAB=30°,
∴DPPE=1tan30°=3.
(3)如图3中,由题意PM=x,MN=4﹣x,
∵∠PDM=∠EPN,∠DMP=∠PNE=90°,
∴△DMP∽△PNE,
∴DMPN=PMEN=PDPE=3,
∴DM4-x=xEN=3,
∴DM=3(4﹣x),EN=33x,
∴PD=DM2+PM2=[3(4-x)]2+x2=2x2-6x+12,
PE=33PD=233•x2-6x+12,
∴y=PD•PE=433(x2﹣6x+12)=433x2﹣83x+163(x>0),
∵y=433(x﹣3)2+43,
∵433>0,
∴当x=3时,y有最小值,最小值为43.
【类型2】几何旋转变换综合题
【例2】(2020•锦州)已知△AOB和△MON都是等腰直角三角形(22OA<OM=ON),∠AOB=∠MON=90°.
(1)如图1:连AM,BN,求证:△AOM≌△BON;
(2)若将△MON绕点O顺时针旋转,
①如图2,当点N恰好在AB边上时,求证:BN2+AN2=2ON2;
②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.
【分析】(1)根据SAS证明三角形全等即可.
(2)②连接AM,证明AM=BN,∠MAN=90°,利用勾股定理解决问题即可.
②分两种情形分别画出图形求解即可.
【解析】(1)证明:如图1中,
∵∠AOB=∠MON=90°,
∴∠AOM=∠BON,
∵AO=BO,OM=ON,
∴△AOM≌△BON(SAS).
(2)①证明:如图2中,连接AM.
同法可证△AOM≌△BON,
∴AM=BN,∠OAM=∠B=45°,
∵∠OAB=∠B=45°,
∴∠MAN=∠OAM+∠OAB=90°,
∴MN2=AN2+AM2,
∵△MON是等腰直角三角形,
∴MN2=2ON2,
∴NB2+AN2=2ON2.
②如图3﹣1中,设OA交BN于J,过点O作OH⊥MN于H.
∵△AOM≌△BON,
∴AM=BN,∠OAM=∠OBN,
∵∠AJN=∠BJO,
∴∠ANJ=∠JOB=90°,
∵OM=ON=3,∠MON=90°,OH⊥MN,
∴MN=32,MH=HN═OH=322,
∴AH=OA2-OH2=42-(322)2=462,
∴BN=AM=MH+AH=46+322.
如图3﹣2中,同法可证AM=BN=46-322.
【变式2-1】(2020•沈阳)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.
(1)如图1,当α=60°时,
①求证:PA=DC;
②求∠DCP的度数;
(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.
(3)当α=120°时,若AB=6,BP=31,请直接写出点D到CP的距离为 32或532 .
【分析】(1)①证明△PBA≌△DBC(SAS)可得结论.
②利用全等三角形的性质解决问题即可.
(2)证明△CBD∽△ABP,可得CDPA=BCAB=3解决问题.
(3)分两种情形,解直角三角形求出CD即可解决问题.
【解析】(1)①证明:如图1中,
∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,
∴PB=PD,
∵AB=AC,PB=PD,∠BAC=∠BPD=60°,
∴△ABC,△PBD是等边三角形,
∴∠ABC=∠PBD=60°,
∴∠PBA=∠DBC,
∵BP=BD,BA=BC,
∴△PBA≌△DBC(SAS),
∴PA=DC.
②解:如图1中,设BD交PC于点O.
∵△PBA≌△DBC,
∴∠BPA=∠BDC,
∵∠BOP=∠COD,
∴∠OBP=∠OCD=60°,即∠DCP=60°.
(2)解:结论:CD=3PA.
理由:如图2中,
∵AB=AC,PB=PD,∠BAC=∠BPD=120°,
∴BC=2•AB•cs30°=3BA,BD═2BP•cs30°=3BP,
∴BCBA=BDBP=3,
∵∠ABC=∠PBD=30°,
∴∠ABP=∠CBD,
∴△CBD∽△ABP,
∴CDPA=BCAB=3,
∴CD=3PA.
(3)过点D作DM⊥PC于M,过点B作BN⊥CP交CP的延长线于N.
如图3﹣1中,当△PBA是钝角三角形时,
在Rt△ABN中,∵∠N=90°,AB=6,∠BAN=60°,
∴AN=AB•cs60°=3,BN=AB•sin60°=33,
∵PN=PB2-BN2=31-27=2,
∴PA=3﹣2=1,
由(2)可知,CD=3PA=3,
∵∠BPA=∠BDC,
∴∠DCA=∠PBD=30°,
∵DM⊥PC,
∴DM=12CD=32
如图3﹣2中,当△ABP是锐角三角形时,同法可得PA=2+3=5,CD=53,DM=12CD=532,
综上所述,满足条件的DM的值为32或532.
故答案为32或532.
【变式2-2】(2020•葫芦岛)在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.
(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;
(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)若BC=4,CD=26,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.
【分析】(1)利用直角三角形斜边的中线等于斜边的一半,得出OE=OA=12AB,进而得出∠BOE=2∠BAE,同理得出OD=OA=12AB,∠DOE=2∠BAD,即可得出结论;
(2)先判断出△AOM≌△BOE(SAS),得出∠MAO=∠EBO,MA=EB,再判断出∠MAD=∠DCE,进而判断出△MAD≌△ECD,即可得出结论;
(3)分点B在AC左侧和右侧两种情况,类似(2)的方法判断出OD=OE,即可得出结论.
【解析】(1)DO⊥EO,DO=EO;
理由:当点B旋转到CD边上时,点E必在边AC上,
∴∠AEB=∠CEB=90°,
在Rt△ABE中,点O是AB的中点,
∴OE=OA=12AB,
∴∠BOE=2∠BAE,
在Rt△ABD中,点O是AB的中点,
∴OD=OA=12AB,
∴∠DOE=2∠BAD,
∴OD=OE,
∵等腰△ADC,且∠ADC=90°,
∴∠DAC=45°,
∴∠DOE=∠BOE+∠DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,
∴OD⊥OE;
(2)仍然成立,
理由:如图2,延长EO到点M,使得OM=OE,连接AM,DM,DE,
∵O是AB的中点,
∴OA=OB,
∵∠AOM=∠BOE,
∴△AOM≌△BOE(SAS),
∴∠MAO=∠EBO,MA=EB,
∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,
∴∠CAD=∠ACD=∠EBC=∠BCE=45°,
∵∠OBE=180°﹣∠EBC=135°,
∴∠MAO=135°,
∴∠MAD=∠MAO﹣∠DAC=90°,
∵∠DCE=∠DCA+∠BCE=90°,
∴∠MAD=∠DCE,
∵MA=EB,EB=EC,
∴MA=EC,
∵AD=DC,
∴△MAD≌△ECD,
∴MD=ED,∠ADM=∠CDE,
∵∠CDE+∠ADE=90°,
∴∠ADM+∠ADE=90°,
∴∠MDE=90°,
∵MO=EO,MD=DE,
∴OD=12ME,OD⊥ME,
∵OE=12ME,
∴OD=OE,OD⊥OE;
(3)①当点B在AC左侧时,如图3,
延长EO到点M,使得OM=OE,连接AM,DM,DE,
同(2)的方法得,△OBE≌△OAM(SAS),
∴∠OBE=∠OAM,OM=OE,BE=AM,
∵BE=CE,
∴AM=CE,
在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,
∵∠ADC=∠BEC=90°,
∴∠DCE=540°﹣90°﹣90°﹣∠OBE﹣∠BAD=360°﹣∠OBE=360°﹣∠OAM﹣∠BAD,
∵∠DAM+∠OAM+∠BAD=360°,
∴∠DAM=360°﹣∠OAM﹣∠BAD,
∴∠DAM=∠DCE,
∵AD=CD,
∴△DAM≌△DCE(SAS),
∴DM=DE,∠ADM=∠CDE,
∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,
∵OM=OE,
∴OD=OE=12ME,∠DOE=90°,
在Rt△BCE中,CE=22BC=22,
过点E作EH⊥DC交DC的延长线于H,
在Rt△CHE中,∠ECH=180°﹣∠ACD﹣∠ACB﹣∠BCE=180°﹣45°﹣60°﹣45°=30°,
∴EH=12CE=2,
根据勾股定理得,CH=3EH=6,
∴DH=CD+CH=36,
在Rt△DHE中,根据勾股定理得,DE=EH2+DH2=214,
∴OD=22DE=27,
②当点B在AC右侧时,如图4,
同①的方法得,OD=OE,∠DOE=90°,
连接DE,过点E作EH⊥CD于H,
在Rt△EHC中,∠ECH=30°
∴EH=12CE=2,
根据勾股定理得,CH=6,
∴DH=CD﹣CH=6,
在Rt△DHE中,根据勾股定理得,DE=22,
∴OD=22DE=2,
即:线段OD的长为2或27.
【变式2-3】(2020•潍坊)如图1,在△ABC中,∠A=90°,AB=AC=2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.
(1)当0°<α<180°时,求证:CE=BD;
(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;
(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.
【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;
(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出CD=BC=2+2,利用等腰三角形“三线合一”的性质即可得到结论;
(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.
【解析】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,
∵∠CAE+∠BAE=∠BAD+∠BAE=90°,
∴∠CAE=∠BAD,
在△ACE和△ABD中,
AC=AB∠CAE=∠BADAE=AD,
∴△ACE≌△ABD(SAS),
∴CE=BD;
(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,
在△ACE和△ABD中,
AC=AB∠CAE=∠BADAE=AD,
∴△ACE≌△ABD(SAS),
∴∠ACE=∠ABD,
∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,
∴∠ABD+∠FEB=90°,
∴∠EFB=90°,
∴CF⊥BD,
∵AB=AC=2+1,AD=AE=1,∠CAB=∠EAD=90°,
∴BC=2AB=2+2,CD=AC+AD=2+2,
∴BC=CD,
∵CF⊥BD,
∴CF是线段BD的垂直平分线;
(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,
∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:
∵AB=AC=2+1,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,
∴AG=12BC=2+22,∠GAB=45°,
∴DG=AG+AD=2+22+1=2+42,∠DAB=180°﹣45°=135°,
∴△BCD的面积的最大值为:12BC⋅DG=12(2+2)(2+42)=32+52,
旋转角α=135°.
【变式2-4】(2020•鄂尔多斯)(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;
②在①中所画图形中,∠AB′B= 45 °.
(2)【问题解决】
如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
(3)【拓展延伸】
如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).
【分析】(1)①根据旋转角,旋转方向画出图形即可.
②只要证明△ABB′是等腰直角三角形即可.
(2)如图2,过点E作EH⊥CD交CD的延长线于H.证明△ABC≌△EAH(AAS)即可解决问题.
(3)如图3中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=DG2+CD2,由此即可解决问题.
【解析】(1)①如图1中,△AB′C′即为所求.
②由作图可知,△ABB′是等腰直角三角形,
∴∠AB′B=45°,
故答案为45.
(2)如图2中,过点E作EH⊥CD交CD的延长线于H.
∵∠C=∠BAE=∠H=90°,
∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,
∴∠B=∠EAH,
∵AB=AE,
∴△ABC≌△EAH(AAS),
∴BC=AH,EH=AC,
∵BC=CD,
∴CD=AH,
∴DH=AC=EH,
∴∠EDH=45°,
∴∠ADE=135°.
(3)如图3中,连接AC,
∵AE⊥BC,BE=EC,
∴AB=AC,
将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,
∵∠BAD=∠CAG,
∴∠BAC=∠DAG,
∵AB=AC,AD=AG,
∴∠ABC=∠ACB=∠ADG=∠AGD,
∴△ABC∽△ADG,
∵AD=kAB,
∴DG=kBC=2k,
∵∠BAE+∠ABC=90°,∠BAE=∠ADC,
∴∠ADG+∠ADC=90°,
∴∠GDC=90°,
∴CG=DG2+CD2=4k2+9.
∴BD=CG=4k2+9.
【类型3】几何翻折变换综合题
【例3】(2020•南通)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.
(1)如图①,若点P恰好在边BC上,连接AP,求APDE的值;
(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.
【分析】(1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.
(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4﹣x.证明△EGP∽△PHD,推出EGPH=PGDH=EPPD=412=13,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.
【解析】(1)如图①中,取DE的中点M,连接PM.
∵四边形ABCD是矩形,
∴∠BAD=∠C=90°,
由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,
在Rt△EPD中,∵EM=MD,
∴PM=EM=DM,
∴∠3=∠MPD,
∴∠1=∠3+∠MPD=2∠3,
∵∠ADP=2∠3,
∴∠1=∠ADP,
∵AD∥BC,
∴∠ADP=∠DPC,
∴∠1=∠DPC,
∵∠MOP=∠C=90°,
∴△POM∽△DCP,
∴POPM=CDPD=812=23,
∴APDE=2PO2PM=23.
解法二:证明△ABP和△DAE相似,APDE=ABDA=23.
(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x
∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,
∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,
∴∠EPG=∠PDH,
∴△EGP∽△PHD,
∴EGPH=PGDH=EPPD=412=13,
∴PH=3EG=3x,DH=AG=4+x,
在Rt△PHD中,∵PH2+DH2=PD2,
∴(3x)2+(4+x)2=122,
解得x=165(负值已经舍弃),
∴BG=4-165=45,
在Rt△EGP中,GP=EP2-EG2=125,
∵GH∥BC,
∴△EGP∽△EBF,
∴EGEB=GPBF,
∴1654=125BF,
∴BF=3.
【变式3-1】(2020•无锡)如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形PADE的面积为S.
(1)若DE=33,求S的值;
(2)设DE=x,求S关于x的函数表达式.
【分析】(1)根据三角函数的定义得到∠AED=60°,根据平行线的性质得到∠BAE=60°,根据折叠的性质得到∠AEC=∠AEM,推出△APE为等边三角形,于是得到结论;
(2)过E作EF⊥AB于F,由(1)可知,∠AEP=∠AED=∠PAE,求得AP=PE,设AP=PE=a,AF=ED=x,则PF=a﹣x,EF=AD=1,根据勾股定理列方程得到a=x2+12x,于是得到结论.
【解析】(1)∵在矩形ABCD中,∠D=90°,AD=1,DE=33,
∴AE=AD2+DE2=233,
∴tan∠AED=ADDE=3,
∴∠AED=60°,
∵AB∥CD,
∴∠BAE=60°,
∵四边形ABCE关于直线AE的对称图形为四边形ANME,
∴∠AEC=∠AEM,
∵∠PEC=∠DEM,
∴∠AEP=∠AED=60°,
∴△APE为等边三角形,
∴S=12×(233+33)×1=32;
(2)过E作EF⊥AB于F,
由(1)可知,∠AEP=∠AED=∠PAE,
∴AP=PE,
设AP=PE=a,AF=ED=x,
则PF=a﹣x,EF=AD=1,
在Rt△PEF中,(a﹣x)2+1=a2,解得:a=x2+12x,
∴S=12⋅x×1+12×x2+12x×1=12x+x2+14x=3x2+14x.
【变式3-2】(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:
①EF⊥BG;
②GE=GF;
③△GDK和△GKH的面积相等;
④当点F与点C重合时,∠DEF=75°,
其中正确的结论共有( )
A.1个B.2个C.3个D.4个
【分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.
【解析】如图,连接BE,设EF与BG交于点O,
∵将纸片折叠,使点B落在边AD的延长线上的点G处,
∴EF垂直平分BG,
∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,
∵AD∥BC,
∴∠EGO=∠FBO,
又∵∠EOG=∠BOF,
∴△BOF≌△GOE(ASA),
∴BF=EG,
∴BF=EG=GF,故②正确,
∵BE=EG=BF=FG,
∴四边形BEGF是菱形,
∴∠BEF=∠GEF,
当点F与点C重合时,则BF=BC=BE=12,
∵sin∠AEB=ABBE=612=12,
∴∠AEB=30°,
∴∠DEF=75°,故④正确,
∵BG平分∠EGF,
∴DG≠GH,
由角平分线定理,DGGH=DKKH,
∴DK≠KH,
∴S△GDK≠S△GKH,
故③错误;
故选:C.
【变式3-3】(2020•广东)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1B.2C.3D.2
【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.
【解析】∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3﹣x,
∴2(3﹣x)=x,
解得x=2.
故选:D.
【达标检测】
1.(2020•包头)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,Rt△ABC绕点C按顺时针方向旋转得到Rt△A′B′C,A′C与AB交于点D.
(1)如图1,当A′B′∥AC时,过点B作BE⊥A′C,垂足为E,连接AE.
①求证:AD=BD;
②求S△ACES△ABE的值;
(2)如图2,当A′C⊥AB时,过点D作DM∥A′B′,交B′C于点N,交AC的延长线于点M,求DNNM的值.
【分析】(1)①由平行线的性质和旋转性质得∠B′A′C=∠A′CA=∠BAC,得CD=AD,再证明CD=BD便可得结论;
②证明△BEC∽△ACB得CE与CD的关系,进而得S△ACE与S△ADE的关系,由D是AB的中点得S△ABE=2S△ADE,进而结果;
(2)证明CN∥AB得△MCN∽△MAD,得MNMD=CNAD,应用面积法求得CD,进而求得AD,再解直角三角形求得CN,便可求得结果.
【解析】(1)①∵A′B′∥AC,
∴∠B′A′C=∠A′CA,
∵∠B′A′C=∠BAC,
∴∠A′CA=∠BAC,
∴AD=CD,
∵∠ACB=90°,
∴∠BCD=90°﹣∠ACD,
∵∠ABC=90°﹣∠BAC,
∴∠CBD=∠BCD,
∴BD=CD,
∴AD=BD;
②∵∠ACB=90°,BC=2,AC=4,
∴AB=22+42=25,
∵BE⊥CD,
∴∠BEC=∠ACB=90°,
∵∠BCE=∠ABC,
∴△BEC∽△ACB,
∴CEBC=BCAB,即CE2=225,
∴CE=255,
∵∠ACB=90°,AD=BD,
∴CD=12AB=5,
∴CE=25CD,
∴S△ACE=23S△ADE,
∵AD=BD,
∴S△ABE=2S△ADE,
∴S△ACES△ABE=13;
(2)∵CD⊥AB,
∴∠ADC=90°=∠A′CB′,
∴AB∥CN,
∴△MCN∽△MAD,
∴MNMD=CNAD,
∵S△ABC=12AB⋅CD=12AC⋅BC,
∴CD=AC⋅BCAB=4×225=455,
∴AD=AC2-CD2=855,
∵DM∥A′B′,
∴∠CDN=∠A′=∠A,
∴CN=CD•tan∠CDN=CD•tanA=CD•BCAC=455×24=255,
∴MNMD=255855=14,
∴DNNM=3.
2.(2020•吉林)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.
【探究】求证:四边形AGHD是菱形.
【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 56 .
【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=45,则四边形DCFG的面积为 72 .
【分析】【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD是菱形;
【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;
【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.
【解析】【探究】∵四边形ABCD和AEFG都是平行四边形,
∴AE∥GF,DC∥AB,
∴四边形AGHD是平行四边形,
∵AD=AG,
∴四边形AGHD是菱形;
【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:
ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF+GN)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,
故答案为:56;
【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,
又AM=AM,
∴△AMD≌△AMG(SAS),
∴DM=GM,∠AMD=∠AMG,
∵∠AMD+∠AMG=180°,
∴∠AMD=∠AMG=90°,
∵sin∠BAD=45,
∴DMAD=45,
∴DM=45AD=4,
∴DG=8,
∵四边形ABCD和四边形AEFG是平行四边形,
∴DC∥AB∥GF,DC=AB=GF=9,
∴四边形CDGF是平行四边形,
∵∠AMD=90°,
∴∠CDG=∠AMD=90°,
∴四边形CDGF是矩形,
∴S矩形DCFG=DG•DC=8×9=72,
故答案为:72.
3.(2020•湖北)实践操作:
第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.
第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.
问题解决:
(1)如图1,填空:四边形AEA'D的形状是 正方形 ;
(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.
【分析】(1)由折叠性质得AD=AD′,AE=A′E,∠ADE=∠A′DE,再根据平行线的性质和等腰三角形的判定得到四边形AEA′D是菱形,进而结合内角为直角条件得四边形AEA′D为正方形;
(2)连接C′E,证明Rt△EC′A≌Rt△C′EB′,得∠C′EA=∠EC′B′,便可得结论;
(3)设DF=xcm,则FC′=FC=(8﹣x)cm,由勾股定理求出x的值,延长BA、FC′交于点G,求得AG,再证明△DNF∽△ENG,便可求得结果.
【解析】(1)∵ABCD是矩形,
∴∠A=∠ADC=90°,
∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,
∴AD=A′D,AE=A′E,∠ADE=∠A′DE=45°,
∵AB∥CD,
∴∠AED=∠A′DE=∠ADE,
∴AD=AE,
∴AD=AE=A′E=A′D,
∴四边形AEA′D是菱形,
∵∠A=90°,
∴四边形AEA′D是正方形.
故答案为:正方形;
(2)MC′=ME.
证明:如图1,连接C′E,由(1)知,AD=AE,
∵四边形ABCD是矩形,
∴AD=BC,∠EAC′=∠B=90°,
由折叠知,B′C′=BC,∠B=∠B′,
∴AE=B′C′,∠EAC′=∠B′,
又EC′=C′E,
∴Rt△EC′A≌Rt△C′EB′(HL),
∴∠C′EA=∠EC′B′,
∴MC′=ME;
(3)∵Rt△EC′A≌Rt△C′EB′,
∴AC′=B′E,
由折叠知,B′E=BE,
∴AC′=BE,
∵AC′=2cm,DC′=4cm,
∴AB=CD=2+4+2=8(cm),
设DF=xcm,则FC′=FC=(8﹣x)cm,
∵DC′2+DF2=FC′2,
∴42+x2=(8﹣x)2,
解得,x=3,
即DF=3cm,
如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,
∴tan∠AC′G=tan∠DC′F=AGAC'=DFDC'=34,
∴AG=32cm,
∴EG=32+6=152cm,
∵DF∥EG,
∴△DNF∽△ENG,
∴DNEN=DFEG=3152=25.
4.(2020•宜昌)菱形ABCD的对角线AC,BD相交于点O,0°<∠ABO≤60°,点G是射线OD上一个动点,过点G作GE∥DC交射线OC于点E,以OE,OG为邻边作矩形EOGF.
(1)如图1,当点F在线段DC上时,求证:DF=FC;
(2)若延长AD与边GF交于点H,将△GDH沿直线AD翻折180°得到△MDH.
①如图2,当点M在EG上时,求证:四边形EOGF为正方形;
②如图3,当tan∠ABO为定值m时,设DG=k•DO,k为大于0的常数,当且仅当k>2时,点M在矩形EOGF的外部,求m的值.
【分析】(1)证明四边形GEFD是平行四边形,四边形GECF是平行四边形,得GE=DF,GE=CF,进而得结论;
(2)①由折叠的性质知,∠GDH=∠MDH,DH⊥GM,再证明∠DGM=45°,进而得OE=OG,再根据正方形的判定方法得出结论;
②先证明k=2时,M点在矩形 EOGF上,即点M在EF上,过点D作DN⊥EF于点N,设OB=b,证明△MFH∽△DNM,用b表示MN,再由勾股定理列出等式,解答便可.
【解析】证明(1)∵四边形EOGF是矩形,
∴EO∥GF,GO∥EF,
∵GE∥DC,
∴四边形GEFD是平行四边形,四边形GECF是平行四边形,
∴GE=DF,GE=CF,
∴DF=FC;
(2)①如图1,由折叠的性质知,∠GDH=∠MDH,DH⊥GM,
∵GE∥CD,
∴∠DGM=∠BDC,
∵四边形ABCD是菱形,
∴∠ADB=∠BDC,∠COD=90°,
∵∠ADB=∠GDH,
∴∠DGM=∠GDH,
∵DH⊥GM,
∴∠DGM=45°,
∴∠OEG=45°,
∴OE=OG,
∵四边形EOGF是矩形,
∴四边形EOGF是正方形;
②如图2,∵四边形ABCD是菱形,
∴∠ABD=∠CBD=∠ADB,
∵GE∥CD,
∴∠DGE=∠CDB,
∴∠ABD=∠CBD=∠ADB=∠DGE=∠CDB,
∴∠GDM=2∠ABD,
∵tan∠ABO=m(m为定值),
∴点M始终在固定射线DM上并随k的增大向上运动,
∵当且仅当k>2时,M点在矩形EOGF的外部,
∴k=2时,M点在矩形 EOGF上,
若点M在EF上,如图2,
设OB=b,则,OA=OC=mb,DG=DM=kb=2b,OG=(k+1)b=3b,OE=m(k+1)b=3mb,GH=HM=mkb=2mb,
∴FH=OE﹣GH=3mb﹣2mb=mb,
过点D作DN⊥EF于点N,
∵∠FHM+∠FMH=∠FMH+∠DMN,
∴∠FHM=∠DMN,
∵∠F=∠DNM=90°,
∴△MFH∽△DNM,
∴FHMN=MHDM,
∴mbMN=2mb2b,
∴MN=b,
∵DM2=DN2+MN2,
∴(2b)2=(3mb)2+b2,
解得,m=33,或m=-33(舍),
故m=33.
若点M在OE上,如图3,
∵四边形ABCD是菱形,
∴∠GDH=∠ADO=∠ABO=∠ODC,
设∠GDH=∠ADO=∠ABO=∠ODC=α,OD=x,则DG=2x,
∵∠MOG=∠DGH=90°,
∴GH=DG•tanα=2x•tanα,
OC=OD•tanα=x•tanα,
由折叠性质知,DG=DM=2x,GM⊥DH,
∴∠OGM+∠MGH=∠MGH+∠GHD=90°,
∴∠OGM=∠GHD,
∴△OGM∽△GHD,
∴OMGD=OGGH,
∴OM=GD⋅OGGH=2x⋅3x2x⋅tanα=3xtanα,
由勾股定理得,OD2+OM2=DM2,
∴x2+(3xtanα)2=(2x)2,
解得,tanα=3,
∴m=3(舍弃,这种情形,不符合如图3,隐含条件,∠ABD>45°).
故m=33.
5.(2020•邵阳)已知:如图①,将一块45°角的直角三角板DEF与正方形ABCD的一角重合,连接AF,CE,点M是CE的中点,连接DM.
(1)请你猜想AF与DM的数量关系是 AF=2DM .
(2)如图②,把正方形ABCD绕着点D顺时针旋转α角(0°<α<90°).
①AF与DM的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM到点N,使MN=DM,连接CN)
②求证:AF⊥DM;
③若旋转角α=45°,且∠EDM=2∠MDC,求ADED的值.(可不写过程,直接写出结果)
【分析】(1)根据题意合理猜想即可;
(2)①延长DM到点N,使MN=DM,连接CN,先证明△MNC≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;
②根据全等三角形的性质和直角的换算即可求解;
③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.
【解析】(1)猜想AF与DM的数量关系是AF=2DM,
理由:∵四边形ABCD是正方形,
∴CD=AD,∠ADC=90°,
在△ADF和△CDE中,
AD=CD∠ADF=∠CDEDF=DE,
∴△ADF≌△CDE(SAS),
∴AF=CE,
∵M是CE的中点,
∴CE=2DM,
∴AF=2DM,
故答案为:AF=2DM;
(2)①AF=2DM仍然成立,
理由如下:延长DM到点N,使MN=DM,连接CN,
∵M是CE中点,
∴CM=EM,
又∠CMN=∠EMD,
∴△MNC≌△MDE(SAS),
∴CN=DE=DF,∠MNC=∠MDE,
∴CN∥DE,
又AD∥BC
∴∠NCB=∠EDA,
∵四边形ABCD是正方形,
∴AD=DC,∠BCD=90°=∠EDF,
∴∠ADF=∠DCN,
∴△ADF≌△DCN(SAS),
∴AF=DN,
∴AF=2DM;
②∵△ADF≌△DCN,
∴∠NDC=∠FAD,
∵∠CDA=90°,
∴∠NDC+∠NDA=90°,
∴∠FAD+∠NDA=90°,
∴AF⊥DM;
③∵α=45°,
∴∠EDC=90°﹣45°=45°
∵∠EDM=2∠MDC,
∴∠EDM=23∠EDC=30°,
∴∠AFD=30°,
过A点作AG⊥FD的延长线于G点,∴∠ADG=90°﹣45°=45°,
∴△ADG是等腰直角三角形,
设AG=k,则DG=k,AD=AG÷sin45°=2k,
FG=AG÷tan30°=3k,
∴FD=ED=3k﹣k,
故ADED=2k3k-k=6+22.
6.(2020•益阳)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.
根据以上定义,解决下列问题:
(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?
(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.
①求BE的长;
②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.
【分析】(1)由旋转性质得BE=BF,再证明∠EBF=90°,∠EBF+∠D=180°便可;
(2)①过点C作CF⊥BE于点F,证明△BCF≌△ABE得CF=BE,设BE=x,在Rt△BCF中,则勾股定理列出x的方程解答便可;
②延长CB到F,使得BF=BC,延长CD到G,使得CD=DG,连接FG,分别与AB、AD交于点M、N,求出FG便是△MNC的最小周长.
【解析】(1)∵四边形ABCD是正方形,
∴∠ABC=∠BAD=∠C=∠D=90°,
∵将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,
∴BE=BF,∠CBE=∠ABF,
∴∠EBF=∠ABC=90°,
∴∠EBF+∠D=180°,
∴四边形BEDF为“直等补”四边形;
(2)①过C作CF⊥BF于点F,如图1,
则∠CFE=90°,
∵四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,
∴∠ABC=90°,∠ABC+∠D=180°,
∴∠D=90°,
∵BE⊥AD,
∴∠DEF=90°,
∴四边形CDEF是矩形,
∴EF=CD=1,
∵∠ABE+∠A=∠CBE+∠ABE=90°,
∴∠A=∠CBF,
∵∠AEB=∠BFC=90°,AB=BC=5,
∴△ABE≌△BCF(AAS),
∴BE=CF,
设BE=CF=x,则BF=x﹣1,
∵CF2+BF2=BC2,
∴x2+(x﹣1)2=52,
解得,x=4,或x=﹣3(舍),
∴BE=4;
②如图2,延长CB到F,使得BF=BC,延长CD到G,使得CD=DG,连接FG,分别与AB、AD交于点M、N,过G作GH⊥BC,与BC的延长线交于点H.
则BC=BF=5,CD=DG=1,
∵∠ABC=∠ADC=90°,
∴CM=FM,CN=GN,
∴△MNC的周长=CM+MN+CN=FM+MN+GN=FG的值最小,
∵四边形ABCD是“直等补”四边形,
∴∠A+∠BCD=180°,
∵∠BCD+∠HCG=180°,
∴∠A=∠HCG,
∵∠AEB=∠CHG=90°,
∴△ABE∽△CGH,
∴BEGH=AECH=ABCG
∵AB=5,BE=4,
∴AE=AB2-BE2=3,
∴4GH=3CH=52,
∴GH=85,CH=65,
∴FH=FC+CH=565,
∴FG=FH2+GH2=82,
∴△MNC周长的最小值为82.
7.(2020•十堰)如图1,已知△ABC≌△EBD,∠ACB=∠EDB=90°,点D在AB上,连接CD并延长交AE于点F.
(1)猜想:线段AF与EF的数量关系为 AF=EF ;
(2)探究:若将图1的△EBD绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
(3)拓展:图1中,过点E作EG⊥CB,垂足为点G.当∠ABC的大小发生变化,其它条件不变时,若∠EBG=∠BAE,BC=6,直接写出AB的长.
【分析】(1)方法1、延长DF到K点,并使FK=DC,连接KE,证明△ACF≌△EDK,进而得到△KEF为等腰三角形,即可证明AF=KE=EF;
方法2、先判断出△CBD∽△ABE,得出∠DCB=∠EAB,进而判断出△ADF∽△CDB,再判断出△ADC∽△FDB,得出∠ACD=∠ABF,即可得出结论;
(2)证明原理同(1),延长DF到K点,并使FK=DC,连接KE,证明△ACF≌△EDK,进而得到△KEF为等腰三角形,即可证明AF=KE=EF;
(3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.
【解析】(1)方法1、延长DF到K点,并使FK=DC,连接KE,如图1所示,
∵△ABC≌△EBD,
∴DE=AC,BD=BC,
∴∠CDB=∠DCB,且∠CDB=∠ADF,
∴∠ADF=∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵∠EDB=90°,
∴∠ADF+∠FDE=90°,
∴∠ACD=∠FDE,
∵FK+DF=DC+DF,
∴DK=CF,
在△ACF和△EDK中,AC=ED∠ACF=∠EDKCF=DK,
∴△ACF≌△EDK(SAS),
∴KE=AF,∠K=∠AFC,
又∠AFC=∠KFE,
∴∠K=∠KFE
∴KE=EF
∴AF=EF,
故AF与EF的数量关系为:AF=EF.
故答案为:AF=EF;
方法2、由旋转得,∠CBD=∠ABE,CB=BD,AB=BE,
∴CBAB=BDBE,
∴△CBD∽△ABE,
∴∠DCB=∠EAB,
∵∠ADF=∠CDB,
∴△ADF∽△CDB,
∴ADDC=DFDB,
∴ADDF=DCDB,
∵∠ADC=∠FDB,
∴△ADC∽△FDB,
∴∠ACD=∠ABF,
∵∠ACD+∠DCB=90°,
∴∠EAB+∠ABF=90°,
∴∠AFB=90°,
∴BF⊥AE,
∵AB=BE,BF⊥AE,
∴AF=EF;
故答案为AF=EF;
(2)仍然成立,理由如下:
延长DF到K点,并使FK=DC,连接KE,如图2所示,
设BD延长线DM交AE于M点,
∵△ABC≌△EBD,
∴DE=AC,BD=BC,
∴∠CDB=∠DCB,且∠CDB=∠MDF,
∴∠MDF=∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵∠EDB=90°,
∴∠MDF+∠FDE=90°,
∴∠ACD=∠FDE,
∵FK+DF=DC+DF,
∴DK=CF,
在△ACF和△EDK中,AC=ED∠ACF=∠EDKCF=DK,
∴△ACF≌△EDK(SAS),
∴KE=AF,∠K=∠AFC,
又∠AFC=∠KFE,
∴∠K=∠KFE,
∴KE=EF,
∴AF=EF,
故AF与EF的数量关系为:AF=EF.
(3)当点G在点B右侧时,如图3所示,过点E作EG⊥BC交CB的延长线于G,
∵BA=BE,
∴∠BAE=∠BEA,
∵∠BAE=∠EBG,
∴∠BEA=∠EBG,
∴AE∥CG,
∴∠AEG+∠G=180°,
∴∠AEG=90°,
∴∠ACG=∠G=∠AEG=90°,
∴四边形AEGC为矩形,
∴AC=EG,且AB=BE,
∴Rt△ACB≌Rt△EGB(HL),
∴BG=BC=6,∠ABC=∠EBG,
又∵ED=AC=EG,且EB=EB,
∴Rt△EDB≌Rt△EGB(HL),
∴DB=GB=6,∠EBG=∠ABE,
∴∠ABC=∠ABE=∠EBG=60°,
∴∠BAC=30°,
在Rt△ABC中,由30°所对的直角边等于斜边的一半可知:AB=2BC=12.
当点G在点B左侧时,如图4所示,
由旋转知,∠ABC=∠ABE,AB=BE,
∴∠BAE=∠BEA,
∵∠BAE=∠EBG=2∠ABC=2∠ABE,
∴∠BAE=∠AEB=2∠ABE,
∵∠AEB+∠BAE+∠ABE=180°,
∴2∠ABE+2∠ABE+∠ABE=180°,
∴∠BAE=36°,
∴∠ABC=36°,
在Rt△ABC中,cs36°=BCAB,
∴AB=BCcs36°=6cs36°,
即满足条件的AB=12或6cs36°.
8.(2020•威海)发现规律
(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.
(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.
应用结论
(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.
【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE,由三角形内角和定理可求解;
(2)通过证明△ABC∽△ADE,可得∠BAC=∠DAE,ABAD=ACAE,可证△ABD∽△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,由三角形内角和定理可求解;
(3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ=60°,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质可求解.
【解析】(1)如图①,
∵△ABC,△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,
∵∠ABD+∠FBC=∠ABC=60°,
∴∠ACE+∠FBC=60°,
∴∠BFC=180°﹣∠FBC﹣∠ACE﹣∠ACB=60°;
(2)如图②,
∵∠ABC=∠ADE=α,∠ACB=∠AED=β,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,ABAD=ACAE,
∴∠BAD=∠CAE,ABAC=ADAE,
∴△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,
∴∠BFC=∠BAC,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠BFC+α+β=180°,
∴∠BFC=180°﹣α﹣β;
(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,
∴MN=MK,∠NMK=60°,
∴△MNK是等边三角形,
∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,
如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,
∴△MOK≌△MQN,∠OMQ=60°,
∴OK=NQ,MO=MQ,
∴△MOQ是等边三角形,
∴∠QOM=60°,
∴∠NOQ=30°,
∵OK=NQ,
∴当NQ为最小值时,OK有最小值,
由垂线段最短可得:当QN⊥y轴时,NQ有最小值,
此时,QN⊥y轴,∠NOQ=30°,
∴NQ=12OQ=32,
∴线段OK长度的最小值为32.
9.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.
(1)求证:CF=22AD;
(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;
(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.
【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE=90°,由直角三角形的性质和等腰直角三角形的性质可得结论;
(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=322a,由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=22a=22CD=26BC;
(3)将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,可得当点A,点P,点N,点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.
【解析】证明:(1)∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵把AD绕点A逆时针旋转90°,得到AE,
∴AD=AE,∠DAE=90°=∠BAC,
∴∠BAD=∠CAE,DE=2AD,
又∵AB=AC,
∴△BAD≌△CAE(SAS),
∴∠ABD=∠ACE=45°,
∴∠BCE=∠BCA+∠ACE=90°,
∵点F是DE的中点,
∴CF=12DE=22AD;
(2)AG=26BC,
理由如下:如图2,过点G作GH⊥BC于H,
∵BD=2CD,
∴设CD=a,则BD=2a,BC=3a,
∵∠BAC=90°,AB=AC,
∴AB=AC=BC2=322a,
由(1)可知:△BAD≌△CAE,
∴BD=CE=2a,
∵CF=DF,
∴∠FDC=∠FCD,
∴tan∠FDC=tan∠FCD,
∴CECD=GHCH=2,
∴GH=2CH,
∵GH⊥BC,∠ABC=45°,
∴∠ABC=∠BGH=45°,
∴BH=GH,
∴BG=2BH
∵BH+CH=BC=3a,
∴CH=a,BH=GH=2a,
∴BG=22a,
∴AG=BG﹣AB=22a=22CD=26BC;
(3)如图3﹣1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,
∴BP=BN,PC=NM,∠PBN=60°,
∴△BPN是等边三角形,
∴BP=PN,
∴PA+PB+PC=AP+PN+MN,
∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,
此时,如图3﹣2,连接MC,
∵将△BPC绕点B顺时针旋转60°得到△BNM,
∴BP=BN,BC=BM,∠PBN=60°=∠CBM,
∴△BPN是等边三角形,△CBM是等边三角形,
∴∠BPN=∠BNP=60°,BM=CM,
∵BM=CM,AB=AC,
∴AM垂直平分BC,
∵AD⊥BC,∠BPD=60°,
∴BD=3PD,
∵AB=AC,∠BAC=90°,AD⊥BC,
∴AD=BD,
∴3PD=PD+AP,
∴PD=3+12m,
∴BD=3PD=3+32m,
由(1)可知:CE=BD=3+32m.
10.(2020•青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.
特例感知:
(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.
猜想论证:
(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.
联系拓展:
(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)
【分析】(1)证明△FAB≌△GAC即可解决问题.
(2)结论:CG=DE+DF.利用面积法证明即可.
(3)结论不变,证明方法类似(2).
【解析】(1)证明:如图1中,
∵∠F=∠G=90°,∠FAB=∠CAG,AB=AC,
∴△FAB≌△GAC(AAS),
∴FB=CG.
(2)解:结论:CG=DE+DF.
理由:如图2中,连接AD.
∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,
∴12•AB•CG=12•AB•DE+12•AC•DF,
∵AB=AC,
∴CG=DE+DF.
(3)解:结论不变:CG=DE+DF.
理由:如图3中,连接AD.
∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,
∴12•AB•CG=12•AB•DE+12•AC•DF,
∵AB=AC,
∴CG=DE+DF.
11.(2020•山西)综合与实践
问题情境:
如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.
猜想证明:
(1)试判断四边形BE'FE的形状,并说明理由;
(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;
解决问题:
(3)如图①,若AB=15,CF=3,请直接写出DE的长.
【分析】(1)由旋转的性质可得∠AEB=∠CE'B=90°,BE=BE',∠EBE'=90°,由正方形的判定可证四边形BE'FE是正方形;
(2)过点D作DH⊥AE于H,由等腰三角形的性质可得AH=12AE,DH⊥AE,由“AAS”可得△ADH≌△BAE,可得AH=BE=12AE,由旋转的性质可得AE=CE',可得结论;
(3)利用勾股定理可求BE=BE'=9,再利用勾股定理可求DE的长.
【解析】(1)四边形BE'FE是正方形,
理由如下:
∵将Rt△ABE绕点B按顺时针方向旋转90°,
∴∠AEB=∠CE'B=90°,BE=BE',∠EBE'=90°,
又∵∠BEF=90°,
∴四边形BE'FE是矩形,
又∵BE=BE',
∴四边形BE'FE是正方形;
(2)CF=E'F;
理由如下:如图②,过点D作DH⊥AE于H,
∵DA=DE,DH⊥AE,
∴AH=12AE,
∴∠ADH+∠DAH=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∴∠DAH+∠EAB=90°,
∴∠ADH=∠EAB,
又∵AD=AB,∠AHD=∠AEB=90°,
∴△ADH≌△BAE(AAS),
∴AH=BE=12AE,
∵将Rt△ABE绕点B按顺时针方向旋转90°,
∴AE=CE',
∵四边形BE'FE是正方形,
∴BE=E'F,
∴E'F=12CE',
∴CF=E'F;
(3)如图①,过点D作DH⊥AE于H,
∵四边形BE'FE是正方形,
∴BE'=E'F=BE,
∵AB=BC=15,CF=3,BC2=E'B2+E'C2,
∴225=E'B2+(E'B+3)2,
∴E'B=9=BE,
∴CE'=CF+E'F=12,
由(2)可知:BE=AH=9,DH=AE=CE'=12,
∴HE=3,
∴DE=DH2+HE2=144+9=317.
12.(2020•辽阳)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.
(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;
(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;
(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.
【分析】(1)连接AC,证A、B、E、C四点共圆,由圆周角定理得出∠AEB=∠ACB,证出△ABC是等腰直角三角形,则∠ACB=45°,进而得出结论;
(2)在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,证△ABF≌△CBE(SAS),得出∠ABF=∠CBE,BF=BE,由等腰三角形的性质得出FH=EH,由三角函数定义得出FH=EH=32BE,进而得出结论;
(3)由(2)得FH=EH=32BE,由三角函数定义得出AH=3BH=32BE,分别表示出CE,进而得出答案.
【解析】(1)连接AC,如图①所示:
∵α=90°,∠ABC=α,∠AEC=α,
∴∠ABC=∠AEC=90°,
∴A、B、E、C四点共圆,
∴∠AEB=∠ACB,
∵∠ABC=90°,AB=CB,
∴△ABC是等腰直角三角形,
∴∠ACB=45°,
∴∠AEB=45°;
(2)AE=3BE+CE,理由如下:
在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:
∵∠ABC=∠AEC,∠ADB=∠CDE,
∴180°﹣∠ABC﹣∠ADB=180°﹣∠AEC﹣∠CDE,
∴∠A=∠C,
在△ABF和△CBE中,AF=CE∠A=∠CAB=CB,
∴△ABF≌△CBE(SAS),
∴∠ABF=∠CBE,BF=BE,
∴∠ABF+∠FBD=∠CBE+∠FBD,
∴∠ABD=∠FBE,
∵∠ABC=120°,
∴∠FBE=120°,
∵BF=BE,
∴∠BFE=∠BEF=12×(180°﹣∠FBE)=12×(180°﹣120°)=30°,
∵BH⊥EF,
∴∠BHE=90°,FH=EH,
在Rt△BHE中,BH=12BE,FH=EH=3BH=32BE,
∴EF=2EH=2×32BE=3BE,
∵AE=EF+AF,AF=CE,
∴AE=3BE+CE;
(3)分两种情况:
①当点D在线段CB上时,
在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:
由(2)得:FH=EH=32BE,
∵tan∠DAB=BHAH=13,
∴AH=3BH=32BE,
∴CE=AF=AH﹣FH=32BE-32BE=3-32BE,
∴CEBE=3-32;
②当点D在线段CB的延长线上时,
在射线AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图③所示:
同①得:FH=EH=32BE,AH=3BH=32BE,
∴CE=AF=AH+FH=32BE+32BE=3+32BE,
∴CEBE=3+32;
综上所述,当α=120°,tan∠DAB=13时,CEBE的值为3-32或3+32.
13.(2020•金华)如图,在△ABC中,AB=42,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连结AP,当PF⊥AC时,求AP的长.
【分析】(1)如图1中,过点A作AD⊥BC于D.解直角三角形求出AD即可.
(2)①证明BE=EP,可得∠EPB=∠B=45°解决问题.
②如图3中,由(1)可知:AC=ADsin60°=833,证明△AEF∽△ACB,推出AFAB=AEAC,由此求出AF即可解决问题.
【解析】(1)如图1中,过点A作AD⊥BC于D.
在Rt△ABD中,AD=AB•sin45°=42×22=4.
(2)①如图2中,
∵△AEF≌△PEF,
∴AE=EP,
∵AE=EB,
∴BE=EP,
∴∠EPB=∠B=45°,
∴∠PEB=90°,
∴∠AEP=180°﹣90°=90°.
②如图3中,由(1)可知:AC=ADsin60°=833,
∵PF⊥AC,
∴∠PFA=90°,
∵△AEF≌△PEF,
∴∠AFE=∠PFE=45°,
∴∠AFE=∠B,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
∴AFAB=AEAC,即AF42=22833,
∴AF=23,
在Rt△AFP,AF=FP,
∴AP=2AF=26.
方法二:AE=BE=PE可得直角三角形ABP,由PF⊥AC,可得∠AFE=45°,可得∠FAP=45°,即∠PAB=30°. AP=ABcs30°=26.
14.(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).
解答下列问题:
(1)当t为何值时,点M在线段CQ的垂直平分线上?
(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;
(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;
(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.
【分析】(1)由平行线分线段成比例可得CMBF=CEBE,可求CM的长,由线段垂直平分线的性质可得CM=MQ,即可求解;
(2)利用锐角三角函数分别求出PH=65t,QN=6-45t,由矩形的性质可求解;
(3)利用面积的和差关系可得S=S梯形GMFH﹣S△CMQ﹣S△HFQ,即可求解;
(4)连接PF,延长AC交EF于K,由“SSS”可证△ABC≌△EBF,可得∠E=∠CAB,可证∠ABC=∠EKC=90°,由面积法可求CK的长,由角平分线的性质可求解.
【解析】(1)∵AB∥CD,
∴CMBF=CEBE,
∴8-68=CM6,
∴CM=32,
∵点M在线段CQ的垂直平分线上,
∴CM=MQ,
∴1×t=32,
∴t=32;
(2)如图1,过点Q作QN⊥AF于点N,
∵∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,
∴AC=AB2+BC2=64+36=10cm,EF=BF2+BE2=64+36=10cm,
∵CE=2cm,CM=32cm,
∴EM=EC2+CM2=4+94=52,
∵sin∠PAH=sin∠CAB,
∴BCAC=PHAP,
∴610=PH2t,
∴PH=65t,
同理可求QN=6-45t,
∵四边形PQNH是矩形,
∴PH=NQ,
∴6-45t=65t,
∴t=3;
∴当t=3时,四边形PQNH为矩形;
(3)如图2,过点Q作QN⊥AF于点N,
由(2)可知QN=6-45t,
∵cs∠PAH=cs∠CAB,
∴AHAP=ABAC,
∴AH2t=810,
∴AH=85t,
∵四边形QCGH的面积为S=S梯形GMFH﹣S△CMQ﹣S△HFQ,
∴S=12×6×(8-85t+6+8-85t+32)-12×32×[6﹣(6-45t)]-12×(6-45t)(8-85t+6)=-1625t2+15t+572;
(4)存在
理由如下:如图3,连接PF,延长AC交EF于K,
∵AB=BE=8cm,BC=BF=6cm,AC=EF=10cm,
∴△ABC≌△EBF(SSS),
∴∠E=∠CAB,
又∵∠ACB=∠ECK,
∴∠ABC=∠EKC=90°,
∵S△CEM=12×EC×CM=12×EM×CK,
∴CK=2×3252=65,
∵PF平分∠AFE,PH⊥AF,PK⊥EF,
∴PH=PK,
∴65t=10﹣2t+65,
∴t=72,
∴当t=72时,使点P在∠AFE的平分线上.
15.(2020•岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.
(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;
(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;
(3)如图3,当t>94s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求AFCE的值.
【分析】(1)先利用勾股定理求出AC,再判断出CP=AP,进而判断出△APF≌△CPE,即可得出结论;
(2)先判断出AF=CE,PE=PF,再用勾股定理得出AQ2+AF2=QF2,即可得出结论;
(3)先判断出△FAQ≌△FPQ(AAS),得出AQ=PQ=t,AF=PF,进而判断出PE=CE,再判断出△CNE∽△CBA,得出CE=58t,在Rt△QPE中,QE2=PQ2+PE2,在Rt△BQE中,QE2=BQ2+BE2,得出PQ2+PE2=BQ2+BE2,t2+(58t)2=(6﹣t)2,进而求出t,即可得出结论.
【解析】(1)∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,
在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,
由运动知,CP=t=5,
∴AP=AC﹣CP=5,
∴AP=CP,
∵AD∥BC,
∴∠PAF=∠PCE,∠AFP=∠CEP,
∴△APF≌△CPE(AAS),
∴AF=CE;
(2)结论:AQ2+CE2=QE2,
理由:如图2,
连接FQ,由(1)知,△APF≌△CPE,
∴AF=CE,PE=PF,
∵EF⊥PQ,
∴QE=QF,
在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,
∴AQ2+CE2=QE2;
(3)如图3,
由运动知,AQ=t,CP=t,
∴AP=AC﹣CP=10﹣t,
∵FQ平分∠AFE,
∴∠AFQ=∠PFQ,
∵∠FAQ=∠FPQ=90°,FQ=FQ,
∴△FAQ≌△FPQ(AAS),
∴AQ=PQ=t,AF=PF,
∴BQ=AB﹣AQ=6﹣t,∠FAC=∠FPA,
∵∠DAC=∠ACB,∠APF=∠CPE,
∴∠ACB=∠CPE,
∴PE=CE,过点E作EN⊥AC于N,
∴CN=12CP=12t,∠CNE=90°=∠ABC,
∵∠NCE=∠BCA,
∴△CNE∽△CBA,
∴CEAC=CNCB,
∴CE10=12t8,
∴CE=58t,
∴PE=58t,BE=BC﹣CE=8-58t,
在Rt△QPE中,QE2=PQ2+PE2,
在Rt△BQE中,QE2=BQ2+BE2,
∴PQ2+PE2=BQ2+BE2,
∴t2+(58t)2=(6﹣t)2+(8-58t)2,
∴t=5011,
∴CP=t=5011,
∴AP=10﹣CP=6011,
∵AD∥BC,
∴△APF∽△CPE,
∴AFCE=APCP=60115011=65.
16.(2020•潍坊)如图1,在△ABC中,∠A=90°,AB=AC=2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.
(1)当0°<α<180°时,求证:CE=BD;
(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;
(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.
【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;
(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出CD=BC=2+2,利用等腰三角形“三线合一”的性质即可得到结论;
(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.
【解析】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,
∵∠CAE+∠BAE=∠BAD+∠BAE=90°,
∴∠CAE=∠BAD,
在△ACE和△ABD中,
AC=AB∠CAE=∠BADAE=AD,
∴△ACE≌△ABD(SAS),
∴CE=BD;
(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,
在△ACE和△ABD中,
AC=AB∠CAE=∠BADAE=AD,
∴△ACE≌△ABD(SAS),
∴∠ACE=∠ABD,
∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,
∴∠ABD+∠FEB=90°,
∴∠EFB=90°,
∴CF⊥BD,
∵AB=AC=2+1,AD=AE=1,∠CAB=∠EAD=90°,
∴BC=2AB=2+2,CD=AC+AD=2+2,
∴BC=CD,
∵CF⊥BD,
∴CF是线段BD的垂直平分线;
(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,
∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:
∵AB=AC=2+1,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,
∴AG=12BC=2+22,∠GAB=45°,
∴DG=AG+AD=2+22+1=2+42,∠DAB=180°﹣45°=135°,
∴△BCD的面积的最大值为:12BC⋅DG=12(2+2)(2+42)=32+52,
旋转角α=135°.
17.(2020•重庆)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=23.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.
(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;
(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;
(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.
【分析】(1)如图1中,连接BE,CF.解直角三角形求出BE,再利用全等三角形的性质证明CF=BE,利用三角形的中位线定理即可解决问题.
(2)结论:∠DNM=120°是定值.利用全等三角形的性质证明∠EBC+∠BCF=120°,再利用三角形的中位线定理,三角形的外角的性质证明∠DNM=∠EBC+∠BCF即可.
(3)如图3﹣1中,取AC的中点,连接BJ,BN.首先证明当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.解直角三角形求出NH即可解决问题.
【解析】(1)如图1中,连接BE,CF.
∵△ABC是等边三角形,AD⊥BC,
∴AB=BC=AC=8,BD=CD=4,∠BAD=∠CAD=30°,
∴AD=3BD=43,
∵△AEF是等边三角形,
∴∠EAF=60°,
∴∠EAG=∠GAF=30°,
∴EG=GF,
∵AE=23,
∴DE=AE=23,
∴BE=BD2+DE2=42+(23)2=27,
∵△ABC,△AEF是等边三角形,
∴AB=AC,AE=AF,∠BAC=∠EAF=60°,
∴∠BAE=∠CAF,
∴△BAE≌△CAF(SAS),
∴CF=BE=27,
∵EN=CN,EG=FG,
∴GN=12CF=7.
(2)结论:∠DNM=120°是定值.
理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),
∴∠ABE=∠ACF,
∵∠ABC+∠ACB=60°+60°=120°,
∴∠EBC+∠BCF=∠ABC﹣∠ABE+∠ACB+∠ACF=120°,
∵EN=NC,EM=MF,
∴MN∥CF,
∴∠ENM=∠ECF,
∵BD=DC,EN=NC,
∴DN∥BE,
∴∠CDN=∠EBC,
∵∠END=∠NDC+∠NCD,
∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACB+∠ACN+∠ECF=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.
(3)如图3﹣1中,取AC的中点,连接BJ,BN.
∵AJ=CJ,EN=NC,
∴JN=12AE=3,
∵BJ=AD=43,
∴BN≤BJ+JN,
∴BN≤53,
∴当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.
∵KJ=AJ•tan30°=433,JN=3,
∴KN=733,
在Rt△HKN中,∵∠NHK=90°,∠NKH=60°,
∴HN=NK•sin60°=733×32=72,
∴S△ADN=12•AD•NH=12×43×72=73.
18.(2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
(1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:AP=12AC;
(2)变式求异 如图2,若∠C=90°,m=62,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;
(3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.
【分析】(1)证明△ADP是等边三角形即可解决问题.
(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.
(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.
【解析】(1)证明:∵AC=BC,∠C=60°,
∴△ABC是等边三角形,
∴AC=AB,∠A=60°,
由题意,得DB=DP,DA=DB,
∴DA=DP,
∴△ADP使得等边三角形,
∴AP=AD=12AB=12AC.
(2)解:∵AC=BC=62,∠C=90°,
∴AB=AC2+BC2=(62)2+(62)2=12,
∵DH⊥AC,
∴DH∥BC,
∴△ADH∽△ABC,
∴DHBC=ADAB,
∵AD=7,
∴DH62=712,
∴DH=722,
将∠B沿过点D的直线折叠,
情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,
∵AB=12,
∴DP1=DB=AB﹣AD=5,
∴HP1=DP12-DH2=52-(722)2=22,
∴AP1=AH+HP1=42,
情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,
同法可证HP2=22,
∴AP2=AH﹣HP2=32,
综上所述,满足条件的AP的值为42或32.
(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.
∵CA=CB,CH⊥AB,
∴AH=HB=6,
∴CH=AC2-AH2=102-62=8,
当DB=DP时,设BD=PD=x,则AD=12﹣x,
∵sinA=CHAC=PDAD,
∴810=x12-x,
∴x=163,
∴AD=AB﹣BD=203,
观察图形可知当6<a<203时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.
19.(2020•丹东)已知:菱形ABCD和菱形A′B′C′D′,∠BAD=∠B′A′D′,起始位置点A在边A′B′上,点B在A′B′所在直线上,点B在点A的右侧,点B′在点A′的右侧,连接AC和A′C′,将菱形ABCD以A为旋转中心逆时针旋转α角(0°<α<180°).
(1)如图1,若点A与A′重合,且∠BAD=∠B′A′D′=90°,求证:BB′=DD′.
(2)若点A与A′不重合,M是A′C′上一点,当MA′=MA时,连接BM和A′C,BM和A′C所在直线相交于点P.
①如图2,当∠BAD=∠B′A′D′=90°时,请猜想线段BM和线段A′C的数量关系及∠BPC的度数.
②如图3,当∠BAD=∠B′A′D′=60°时,请求出线段BM和线段A′C的数量关系及∠BPC的度数.
③在②的条件下,若点A与A′B′的中点重合,A′B′=4,AB=2,在整个旋转过程中,当点P与点M重合时,请直接写出线段BM的长.
【分析】(1)证明△ADD′≌△BAB′(SAS)可得结论.
(2)①证明△AA′C∽△MAB,可得结论.
②证明方法类似①.
③求出A′C,利用②中结论计算即可.
【解析】(1)证明:如图1中,
在菱形ABCD和菱形A′B′C′D′中,∵∠BAD=∠B′A′D′=90°,
∴四边形ABCD,四边形A′B′CD′都是正方形,
∵∠DAB=∠D′AB′=90°,
∴∠DAD′=∠BAB′,
∵AD=AB,AD′=AB′,
∴△ADD′≌△ABB′(SAS),
∴DD′=BB′.
(2)①解:如图2中,结论:CA′=2BM,∠BPC=45°.
理由:设AC交BP于O.
∵四边形ABCD,四边形A′B′CD′都是正方形,
∴∠MA′A=∠DAC=45°,
∴∠A′AC=∠MAB,
∵MA′=MA,
∴∠MA′A=∠MAA′=45°,
∴∠AMA′=90°,
∴AA′=2AM,
∵△ABC是等腰直角三角形,
∵AC=2AB,
∴AA'AM=ACAB=2,
∵∠A′AC=∠MAB,
∴△AA′C∽△MAB,
∴A'CBM=AA'AM=2,∠A′CA=∠ABM,
∴CA′=2BM,
∵∠AOB=∠COP,
∴∠CPO=∠OAB=45°,即∠BPC=45°.
②解:如图3中,设AC交BP于O.
在菱形ABCD和菱形A′B′C′D′中,∵∠BAD=∠B′A′D′=60°,
∴∠C′A′B′=∠CAB=30°,
∴∠A′AC=∠MAB,
∵MA′=MA,
∴∠MA′A=∠MAA′=30°,
∴AA′=3AM,
在△ABC中,∵BA=BC,∠CAB=30°,
∴AC=3AB,
∴AA'AM=ACAB=3,
∵∠A′AC=∠MAB,
∴△A′AC∽△MAB,
∴A'CBM=AA'AM=3,∠ACA′=∠ABM,
∴A′C=3BM,
∵∠AOB=∠COP,
∴∠CPO=∠OAB=30°,即∠BPC=30°.
③如图4中,过点A作AH⊥A′C于H.
由题意AB=BC=CD=AD=2,可得AC=3AB=23,
在Rt△A′AH中,A′H=12AA′=1,A'H=3AH=3,
在Rt△AHC中,CH=AC2-AH2=(23)2-12=11,
∴A′C=A′H+CH=3+11或A′C=11-3
由②可知,A′C=3BM,
∴BM=1+333或333-1.
20.(2020•郴州)如图1,在等腰直角三角形ADC中,∠ADC=90°,AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<90°).
(1)如图2,在旋转过程中,
①判断△AGD与△CED是否全等,并说明理由;
②当CE=CD时,AG与EF交于点H,求GH的长.
(2)如图3,延长CE交直线AG于点P.
①求证:AG⊥CP;
②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
【分析】(1)①结论:△AGD≌△CED.根据SAS证明即可.
②如图2中,过点A作AT⊥GD于T.解直角三角形求出AT,GT,再利用相似三角形的性质求解即可.
(2)①如图3中,设AD交PC于O.利用全等三角形的性质,解决问题即可.
②因为∠CPA=90°,AC是定值,推出当∠ACP最小时,PC的值最大,推出当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中).
【解析】(1)①如图2中,结论:△AGD≌△CED.
理由:∵四边形EFGD是正方形,
∴DG=DE,∠GDE=90°,
∵DA=DC,∠ADC=90°,
∴∠GDE=∠ADC,
∴∠ADG=∠CDE,
∴△AGD≌△CED(SAS).
②如图2中,过点A作AT⊥GD于T.
∵△AGD≌△CED,CD=CE,
∴AD=AG=4,
∵AT⊥GD,
∴TG=TD=1,
∴AT=AG2-TG2=15,
∵EF∥DG,
∴∠GHF=∠AGT,
∵∠F=∠ATG=90°,
∴△GFH∽△ATG,
∴GHAG=FGAT,
∴GH4=215,
∴GH=81515.
(2)①如图3中,设AD交PC于O.
∵△AGD≌△CED,
∴∠DAG=∠DCE,
∵∠DCE+∠COD=90°,∠COD=∠AOP,
∴∠AOP+∠DAG=90°,
∴∠APO=90°,
∴CP⊥AG.
②∵∠CPA=90°,AC是定值,
∴当∠ACP最小时,PC的值最大,
∴当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中),
∵∠CED=90°,CD=4,DE=2,
∴EC=CD2-DE2=42-22=23,
∵EF=DE=2,
∴CP=CE+EF=2+23,
∴PC的最大值为2+23.
21.(2020•天津)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).
(Ⅰ)如图①,当OP=1时,求点P的坐标;
(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.
①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;
②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).
【分析】(Ⅰ)如图①中,过点P作PH⊥OA于H.解直角三角形求出OH,PH即可.
(Ⅱ)①解直角三角形求出DQ,DO′即可.
②求出点O′落在AB上时,S=34×(43)2=439.当43<t≤2时,重叠部分是四边形PQDC,S=34t2-38(3t﹣4)2=-738t2+33t﹣23,当t=-332×(-738)=127时,S有最大值,最大值=437.再求出当t=1或3时,S的值即可判断.
【解析】(Ⅰ)如图①中,过点P作PH⊥OA于H.
∵∠OAB=90°,∠B=30°,
∴∠BOA=90°﹣30°=60°,
∴∠OPH=90°﹣60°=30°,
∵OP=1,
∴OH=12OP=12,PH=OP•cs30°=32,
∴P(12,32).
(Ⅱ)①如图②中,
由折叠可知,△O′PQ≌△OPQ,
∴OP=O′P,OQ=O′Q,
∵OP=OQ=t,
∴OP=OQ=O′P=O′Q,
∴四边形OPO′Q是菱形,
∴QO′∥OB,
∴∠ADQ=∠B=30°,
∵A(2,0),
∴OA=2,QA=2﹣t,
在Rt△AQD中,DQ=2QA=4﹣2t,
∵O′D=O′Q﹣QD=3t﹣4,
∴43<t<2.
②当点O′落在AB上时,重叠部分是△PQO′,此时t=43,S=34×(43)2=439,
当43<t≤2时,重叠部分是四边形PQDC,S=34t2-38(3t﹣4)2=-738t2+33t﹣23,
当t=-332×(-738)=127时,S有最大值,最大值=437,
当t=1时,S=34,当t=3时,S=12×12×32=38,
综上所述,38≤S≤437.
附7 探究动态几何问题: 这是一份附7 探究动态几何问题,共64页。
最新中考数学总复习真题探究与变式训练(讲义) 专题32 几何图形中的最值问题(含隐圆): 这是一份最新中考数学总复习真题探究与变式训练(讲义) 专题32 几何图形中的最值问题(含隐圆),文件包含专题32几何图形中的最值问题含隐圆原卷版docx、专题32几何图形中的最值问题含隐圆解析版docx等2份试卷配套教学资源,其中试卷共124页, 欢迎下载使用。
专题20几何变式与类比探究综合问题(最新模拟40题预测)-【临考预测】2023中考数学重难题型押题培优【全国通用】: 这是一份专题20几何变式与类比探究综合问题(最新模拟40题预测)-【临考预测】2023中考数学重难题型押题培优【全国通用】,文件包含专题20几何变式与类比探究综合问题最新模拟40题预测-临考预测2023中考数学重难题型押题培优全国通用原卷版docx、专题20几何变式与类比探究综合问题最新模拟40题预测-临考预测2023中考数学重难题型押题培优全国通用解析版docx等2份试卷配套教学资源,其中试卷共149页, 欢迎下载使用。