【二轮复习】高考数学考点6-3 圆锥曲线中的定点定值问题(考点精练).zip
展开求解直线过定点问题常用方法如下:
①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;
②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;
③求证直线过定点,常利用直线的点斜式方程.
④设直线为,根据题目给出的条件,转化为坐标之间的关系,利用韦达定理找出与之间的关系,即可求出定点。
题型一:圆锥曲线中直线过定点问题
【精选例题】
【例1】已知为椭圆C:上一点,点P与椭圆C的两个焦点构成的三角形面积为.
(1)求椭圆C的标准方程;
(2)不经过点P的直线l与椭圆C相交于A,B两点,若直线PA与PB斜率的乘积为-1,证明:直线必过定点,并求出这个定点坐标.
【例2】已知椭圆的离心率,且椭圆经过点.
(1)求椭圆的标准方程;
(2)过点且斜率不为零的直线与椭圆交于两点,关于轴的对称点为,求证:直线与轴交于定点.
【跟踪训练】
1.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):
步骤1:设圆心是,在圆内异于圆心处取一定点,记为;
步骤2:把纸片折叠,使圆周正好通过点(即折叠后图中的点与点重合);
步骤3:把纸片展开,并留下一道折痕,记折痕与的交点为;
步骤4:不停重复步骤2和3,就能得到越来越多的折痕.
现取半径为4的圆形纸片,设点到圆心的距离为,按上述方法折纸.以线段的中点为原点,线段所在直线为轴建立平面直角坐标系,记动点的轨迹为曲线.
(1)求的方程;
(2)设轨迹与轴从左到右的交点为点,,点为轨迹上异于,,的动点,设交直线于点,连结交轨迹于点.直线、的斜率分别为、.
(i)求证:为定值;
(ii)证明直线经过轴上的定点,并求出该定点的坐标.
2.已知椭圆的中心为坐标原点,对称轴为坐标轴,且过点,,,为椭圆上关于轴对称的两点(不与点B重合),,直线与椭圆交于另一点,直线垂直于直线,为垂足.
(1)求的方程;
(2)证明:(i)直线过定点,(ii)存在定点,使为定值.
题型二:圆锥曲线中圆过定点问题
【精选例题】
【例1】已知椭圆:()的离心率为,其左、右焦点分别为,,为椭圆上任意一点,面积的最大值为1.
(1)求椭圆的标准方程;
(2)已知,过点的直线与椭圆交于不同的两点,,直线,与轴的交点分别为,,证明:以为直径的圆过定点.
【例2】在平面直角坐标系xOy中,已知椭圆:过点,离心率为,其左右焦点分别为,.
(1)若点P与,的距离之比为,求直线被点P所在的曲线截得的弦长;
(2)设,分别为椭圆的左、右顶点,Q为上异于,的任意一点,直线,分别与椭圆的右准线交于点M,N,求证:以为直径的圆经过x轴上的定点.
【跟踪训练】
1.设椭圆的离心率为,点为椭圆上一点,的周长为.
(1)求椭圆的方程;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点.问:轴上是否存在定点,使得以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,说明理由.
2.在平面直角坐标系xOy中,已知椭圆C:的长轴长为4,且经过点,其中e为椭圆C的离心率.
(1)求椭圆C的方程;
(2)过点的直线l交椭圆C于A,B两点,点B关于x轴的对称点为,直线交x轴于点Q,过点Q作l的垂线,垂足为H,求证:点H在定圆上.
题型三:圆锥曲线中圆过定值问题
【精选例题】
【例1】在平面直角坐标系中,已知椭圆的离心率为,且右焦点到直线的距离为.
(1)求椭圆的标准方程;
(2)设椭圆上的任一点,从原点向圆引两条切线,设两条切线的斜率分别为,
(i)求证:为定值;
(ii)当两条切线分别交椭圆于时,求证:为定值.
【例2】已知椭圆:离心率,且经点.
(1)求椭圆的标准方程;
(2)过椭圆C右焦点的直线l交椭圆于A,B两点,交直线于点D,且,设直线,,的斜率分别为,,,若,证明为定值.
【例3】已知椭圆过点,离心率.
(1)求椭圆的标准方程;
(2)设过点的斜率为直线交椭圆于另一点,若的面积为2,其中为坐标原点,求直线的斜率的值;
(3)设过点的直线交椭圆于点,,直线,分别交直线于点,.求证:线段的中点为定点.
【跟踪训练】
1.如图,D为圆O:上一动点,过点D分别作x轴,y轴的垂线,垂足分别为A,B,连接并延长至点W,使得,点W的轨迹记为曲线.
(1)求曲线C的方程;
(2)若过点的两条直线,分别交曲线C于M,N两点,且,求证:直线MN过定点;
(3)若曲线C交y轴正半轴于点S,直线与曲线C交于不同的两点G,H,直线SH,SG分别交x轴于P,Q两点.请探究:y轴上是否存在点R,使得?若存在,求出点R坐标;若不存在,请说明理由.
3.已知椭圆的长轴长为4,离心率为,定点.
(1)求椭圆的方程;
(2)设直线与椭圆分别交于点(不在直线上),若直线,与椭圆分别交于点,,且直线过定点,问直线的斜率是否为定值?若是,求出定值;若不是,说明理由.
4.已知椭圆C:的左、右顶点分别为A,B,其离心率为,点P是C上的一点(不同于A,B两点),且面积的最大值为.
(1)求C的方程;
(2)若点O为坐标原点,直线AP交直线于点G,过点O且与直线BG垂直的直线记为l,直线BP交y轴于点E,直线BP交直线l于点F,试判断是否为定值?若是,则求出该定值;若不是,请说明理由.
1.设椭圆:的左、右顶点分别为C,D,且焦距为2.F为椭圆的右焦点,点M在椭圆上且异于C,D两点.若直线与的斜率之积为.
(1)求椭圆的标准方程;
(2)过点作一条斜率不为0的直线与椭圆E相交于A,B两点(A在B,P之间),直线与椭圆E的另一个交点为H,求证:点A,H关于x轴对称.
2.已知椭圆E:的左、右焦点分别为,,左顶点为A,,P是椭圆E上一点(异于顶点),O是坐标原点,Q在线段上,且∥,.
(1)求椭圆E的标准方程;
(2)若直线l与x轴交于点C、与椭圆E交于点M,N,B与N关于x轴对称,直线MB与x轴交于点D,证明:为定值.
3.已知为圆:上任一点,,,,且满足.
(1)求动点的轨迹的方程;
(2)过点的直线与轨迹相交于,两点,是否存在与点不同的定点,使恒成立?若存在,求出点 的坐标;若不存在,请说明理由.
4.椭圆的两个焦点分别为,,离心率为,为椭圆上任意一点,不在轴上,的面积的最大值为.
(1)求椭圆的方程;
(2)过点的直线与椭圆相交于M,N两点,设点,求证:直线,的斜率之和为定值,并求出定值.
5.已知,,动圆与圆外切且与圆内切. 圆心的轨迹为曲线.
(1)求曲线C的方程;
(2)是否存在过点的直线交曲线C于A,B两点,使得点Q为中点时,直线的斜率与直线OQ的斜率乘积为定值?如果存在,求出这个定值,如果不存在,说明理由.
6.已知椭圆的长轴为双曲线的实轴,且椭圆过点.
(1)求椭圆的标准方程;
(2)设点是椭圆上异于点的两个不同的点,直线与的斜率均存在,分别记为,若,试问直线是否经过定点,若经过,求出定点坐标;若不经过,请说明理由.
8.已知椭圆的离心率为,且过点.
(1)求椭圆的标准方程.
(2)已知过右焦点的直线与交于两点,在轴上是否存在一个定点,使?若存在,求出定点的坐标;若不存在,请说明理由.
9.已知椭圆的左、右焦点分别为,,上、下顶点分别为,,且四边形是面积为8的正方形.
(1)求C的标准方程;
(2)M,N为C上且在x轴上方的两点,,与的交点为P,试问是否为定值?若是,求出该定值;若不是,请说明理由.
10.已知椭圆的左、右焦点分别为,点在椭圆上,且满足轴,.
(1)求椭圆的标准方程;
(2)设椭圆的右顶点为,左顶点为,是否存在异于点的定点,使过定点的任一条直线均与椭圆交于(异于两点)两点,且使得直线的斜率为直线的斜率的2倍?若存在,求出的值;若不存在,请说明理由.
11.已知椭圆C:()的离心率为,其左、右焦点分别为,,点P是坐标平面内一点,且(O为坐标原点).
(1)求椭圆C的方程;
(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过点M?若存在,求出点M的坐标和面积的最大值;若不存在,说明理由.
12.已知椭圆经过点,且右焦点为
(1)求C的标准方程;
(2)过点且斜率不为0的直线l与C交于M,N两点,直线分别交直线AM,AN于点E,F,以EF为直径的圆是否过定点?若是,求出定点坐标;若不是,请说明理由.
【二轮复习】高考数学考点6-2 圆锥曲线中的弦长面积类问题(考点精练).zip: 这是一份【二轮复习】高考数学考点6-2 圆锥曲线中的弦长面积类问题(考点精练).zip,文件包含二轮复习高考数学考点6-2圆锥曲线中的弦长面积类问题原卷版docx、二轮复习高考数学考点6-2圆锥曲线中的弦长面积类问题解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
【二轮复习】高考数学考点6-1 圆锥曲线中的非对称韦达定理问题(考点精练).zip: 这是一份【二轮复习】高考数学考点6-1 圆锥曲线中的非对称韦达定理问题(考点精练).zip,文件包含二轮复习高考数学考点6-1圆锥曲线中的非对称韦达定理问题原卷版docx、二轮复习高考数学考点6-1圆锥曲线中的非对称韦达定理问题解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
【二轮复习】高考数学考点7-1 分布列概率中的三大最值问题(考点精练).zip: 这是一份【二轮复习】高考数学考点7-1 分布列概率中的三大最值问题(考点精练).zip,文件包含二轮复习高考数学考点7-1分布列概率中的三大最值问题原卷版docx、二轮复习高考数学考点7-1分布列概率中的三大最值问题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。