终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(2份打包,原卷版+教师版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(原卷版).doc
    • 练习
      2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(教师版).doc
    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(原卷版)第1页
    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(原卷版)第2页
    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(原卷版)第3页
    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(教师版)第1页
    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(教师版)第2页
    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(教师版)第3页
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(2份打包,原卷版+教师版)

    展开

    这是一份2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(2份打包,原卷版+教师版),文件包含2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题原卷版doc、2024年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题教师版doc等2份试卷配套教学资源,其中试卷共112页, 欢迎下载使用。
    二次函数与角综合问题,常见的主要有三种类型:
    特殊角问题:
    利用特殊角的三角函数值找到线段之间的数量关系
    遇到特殊角可以构造特殊三角形,如遇到45°构造等腰直角三角形,遇到30°、60°构造等边三角形,遇到90°构造直角三角形
    2.角的数量关系问题
    (1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决
    (2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答
    (3)角的和差问题
    3.角的最值问题:利用辅助圆等知识来解答
    【例1】(2022•西宁)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.
    (1)求抛物线解析式;
    (2)连接BE,求△BCE的面积;
    (3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.
    【分析】(1)由点A的坐标可得出点E的坐标,由点A,E的坐标,利用待定系数法即可求出抛物线的解析式;
    (2)利用二次函数图象上点的坐标特征可求出点B的坐标,由点A,B的坐标,利用待定系数法可求出直线AB的解析式,利用一次函数图象上点的坐标特征可求出点C的坐标,再利用三角形的面积计算公式,结合S△BCE=S△ABE﹣S△ACE,即可求出△BCE的面积;
    (3)存在,由点A,B的坐标可得出OA=OB,结合∠AOB=90°可得出∠BAE=45°,设点P的坐标为(m,﹣m2+2m+3),分点P在x轴上方及点P在x轴下方两种情况考虑:①当点P在x轴上方时记为P1,过点P1作P1M⊥x轴于点M,则EM=P1M,进而可得出关于m的一元二次方程,解之即可得出m的值,将符合题意的m值代入点P的坐标中即可求出点P1的坐标;②当点P在x轴下方时记为P2,过点P2作P2N⊥x轴于点N,则EN=P2N,进而可得出关于m的一元二次方程,解之即可得出m的值,将符合题意的m值代入点P的坐标中即可求出点P2的坐标.
    【解答】解:(1)∵将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处,点A的坐标为(3,0),点D的坐标为(1,0),
    ∴点E的坐标为(﹣1,0).
    将A(3,0),E(﹣1,0)代入y=ax2+bx+3,
    得:,解得:,
    ∴抛物线的解析式为y=﹣x2+2x+3.
    (2)当x=0时,y=﹣1×(0)2+2×0+3=3,
    ∴点B的坐标为(0,3).
    设直线AB的解析式为y=mx+n(m≠0),
    将A(3,0),B(0,3)代入y=mx+n,
    得:,解得:,
    ∴直线AB的解析式为y=﹣x+3.
    ∵点C在直线AB上,CD⊥x轴于点D(1,0),当x=1时,y=﹣1×1+3=2,
    ∴点C的坐标为(1,2).
    ∵点A的坐标为(3,0),点B的坐标为(0,3),点C的坐标为(1,2),点E的坐标为(﹣1,0),
    ∴AE=4,OB=3,CD=2,
    ∴S△BCE=S△ABE﹣S△ACE=AE•OB﹣AE•CD=×4×3﹣×4×2=2,
    ∴△BCE的面积为2.
    (3)存在,理由如下:
    ∵点A的坐标为(3,0),点B的坐标为(0,3),
    ∴OA=OB=3.
    在Rt△AOB中,∠AOB=90°,OA=OB,
    ∴∠BAE=45°.
    ∵点P在抛物线上,
    ∴设点P的坐标为(m,﹣m2+2m+3).
    ①当点P在x轴上方时记为P1,过点P1作P1M⊥x轴于点M,
    在Rt△EMP1中,∠P1EA=45°,∠P1ME=90°,
    ∴EM=P1M,即m﹣(﹣1)=﹣m2+2m+3,
    解得:m1=﹣1(不合题意,舍去),m2=2,
    ∴点P1的坐标为(2,3);
    ②当点P在x轴下方时记为P2,过点P2作P2N⊥x轴于点N,
    在Rt△ENP2中,∠P2EN=45°,∠P2NE=90°,
    ∴EN=P2N,即m﹣(﹣1)=﹣(﹣m2+2m+3),
    解得:m1=﹣1(不合题意,舍去),m2=4,
    ∴点P2的坐标为(4,﹣5).
    综上所述,抛物线上存在一点P,使∠PEA=∠BAE,点P的坐标为(2,3)或(4,﹣5).
    【例2】(2022•益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.
    (1)求a的值;
    (2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?
    (3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.
    【分析】(1)由抛物线的顶点式可直接得出顶点P的坐标,再代入抛物线F即可得出结论;
    (2)根据题意可分别表达A,B的纵坐标,再根据二次函数的性质可得出m的值;
    (3)过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,则△PKQ∽△QNG,设出点M的坐标,可表达点Q和点G的坐标,进而可得出结论.
    【解答】解:(1)由题意可知,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P的坐标为(m,2m2),
    ∵点P在抛物线F:y=ax2上,
    ∴am2=2m2,
    ∴a=2.
    (2)∵直线x=t与抛物线E,F分别交于点A,B,
    ∴yA=﹣(t﹣m)2+2m2=﹣t2+2mt+m2,yB=2t2,
    ∴s=yA﹣yB
    =﹣t2+2mt+m2﹣2t2
    =﹣3t2+2mt+m2
    =﹣3(t﹣m)2+m2,
    ∵﹣3<0,
    ∴当t=m时,s的最大值为m2,
    ∵s的最大值为4,
    ∴m2=4,解得m=±,
    ∵m<0,
    ∴m=﹣.
    (3)存在,理由如下:
    设点M的坐标为n,则M(n,2n2),
    ∴Q(2n﹣m,4n2﹣2m2),
    ∵点Q在x轴正半轴上,
    ∴2n﹣m>0且4n2﹣2m2=0,
    ∴n=﹣m,
    ∴M(﹣m,m2),Q(﹣m﹣m,0).
    如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,
    ∴∠K=∠N=90°,∠QPK+∠PQK=90°,
    ∵∠PQG=90°,
    ∴∠PQK+∠GQN=90°,
    ∴∠QPK=∠GQN,
    ∴△PKQ∽△QNG,
    ∴PK:QN=KQ:GN,即PK•GN=KQ•QN.
    ∵PK=﹣m﹣m﹣m=﹣m﹣2m,KQ=2m2,GN=﹣m﹣m,
    ∴(﹣m﹣2m)(﹣m﹣m)=2m2•QN
    解得QN=.
    ∴G(0,﹣).
    【例3】(2022•鄂尔多斯)如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C.
    (1)求抛物线的解析式;
    (2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;
    (3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
    【分析】(1)根据待定系数法,将点A,点B代入抛物线解析式,解关于b,c的二元一次方程组,即可求得抛物线的解析式;
    (2)设出点P的坐标,确定出PD∥CO,由PD=CO,列出方程求解即可;
    (3)过点D作DF⊥CP交CP的延长线于点F,过点F作y轴的平行线EF,过点D作DE⊥EF于点E,过点C作CG⊥EF于点G,证明△DEF≌△FGC(AAS),由全等三角形的性质得出DE=FG,EF=CG,求出F点的坐标,由待定系数法求出直线CF的解析式,联立直线CF和抛物线解析式即可得出点P的坐标.
    【解答】解:(1)将点A(﹣,0),B(3,)代入到y=ax2+bx+2中得:
    ,解得:,
    ∴抛物线的解析式为y=﹣x2+x+2;
    (2)设点P(m,﹣m2+m+2),
    ∵y=﹣x2+x+2,
    ∴C(0,2),
    设直线BC的解析式为y=kx+c,
    ∴,解得,
    ∴直线BC的解析式为y=x+2,
    ∴D(m,m+2),
    ∴PD=|﹣m2+m+2﹣m﹣2|=|m2﹣3m|,
    ∵PD⊥x轴,OC⊥x轴,
    ∴PD∥CO,
    ∴当PD=CO时,以P、D、O、C为顶点的四边形是平行四边形,
    ∴|m2﹣3m|=2,解得m=1或2或或,
    ∴点P的横坐标为1或2或或;
    (3)①当Q在BC下方时,如图,过B作BH⊥CQ于H,过H作MN⊥y轴,交y轴于M,过B作BN⊥MH于N,
    ∴∠BHC=∠CMH=∠HNB=90°,
    ∵∠QCB=45°,
    ∴△BHC是等腰直角三角形,
    ∴CH=HB,
    ∴∠CHM+∠BHN=∠HBN+∠BHN=90°,
    ∴∠CHM=∠HBN,
    ∴△CHM≌△HBN(AAS),
    ∴CM=HN,MH=BN,
    ∵H(m,n),
    ∵C(0,2),B(3,),
    ∴,解得,
    ∴H(,),
    设直线CH的解析式为y=px+q,
    ∴,解得,
    ∴直线CH的解析式为y=﹣x+2,
    联立直线CF与抛物线解析式得,
    解得或,
    ∴Q(,);
    ②当Q在BC上方时,如图,过B作BH⊥CQ于H,过H作MN⊥y轴,交y轴于M,过B作BN⊥MH于N,
    同理得Q(,).
    综上,存在,点Q的坐标为(,)或(,).
    【例4】(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
    (1)求抛物线的表达式;
    (2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
    (3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
    【分析】(1)利用待定系数法解答即可;
    (2)过点D作DE⊥x轴于点E,利用轴对称的性质和三角形的中位线的性质定理求得线段OE,DE,则点D坐标可得;利用四边形OADC的面积=S△OAC+S△ACD,S△ADC=S△ABC,利用三角形的面积公式即可求得结论;
    (3)利用分类讨论的思想方法分两种情况讨论解答:①当点P在BC上方时,利用平行线的判定与性质可得点C,P的纵坐标相等,利用抛物线的解析式即可求得结论;②当点P在BC下方时,设PC交x轴于点H,设HB=HC=m,利用等腰三角形的判定与性质和勾股定理求得m值,则点H坐标可求;利用待定系数法求得直线PC的解析式,与抛物线解析式联立即可求得点P坐标;
    【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),
    ∴,
    解得:.
    ∴抛物线的表达式为y=﹣+x+4;
    (2)点D的坐标为(﹣8,8),理由:
    将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,
    过点D作DE⊥x轴于点E,
    ∵A(﹣2,0)、B(8,0),C(0,4),
    ∴OA=2,OB=8,OC=4.
    ∵,,
    ∴.
    ∵∠AOC=∠COB=90°,
    ∴△AOC∽△COB,
    ∴∠ACO=∠CBO.
    ∵∠CBO+∠OCB=90°,
    ∴∠ACO+∠OCB=90°,
    ∴∠ACB=90°,
    ∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,
    ∴点D,C,B三点在一条直线上.
    由轴对称的性质得:BC=CD,AB=AD.
    ∵OC⊥AB,DE⊥AB,
    ∴DE∥OC,
    ∴OC为△BDE的中位线,
    ∴OE=OB=8,DE=2OC=8,
    ∴D(﹣8,8);
    由题意得:S△ACD=S△ABC,
    ∴四边形OADC的面积=S△OAC+S△ADC
    =S△OAC+S△ABC
    =OC•OA+AB•OC
    =4×2+10×4
    =4+20
    =24;
    (3)①当点P在BC上方时,如图,
    ∵∠PCB=∠ABC,
    ∴PC∥AB,
    ∴点C,P的纵坐标相等,
    ∴点P的纵坐标为4,
    令y=4,则﹣+x+4=4,
    解得:x=0或x=6,
    ∴P(6,4);
    ②当点P在BC下方时,如图,
    设PC交x轴于点H,
    ∵∠PCB=∠ABC,
    ∴HC=HB.
    设HB=HC=m,
    ∴OH=OB﹣HB=8﹣m,
    在Rt△COH中,
    ∵OC2+OH2=CH2,
    ∴42+(8﹣m)2=m2,
    解得:m=5,
    ∴OH=3,
    ∴H(3,0).
    设直线PC的解析式为y=kx+n,
    ∴,
    解得:.
    ∴y=﹣x+4.
    ∴,
    解得:,.
    ∴P(,﹣).
    综上,点P的坐标为(6,4)或(,﹣).
    1.(2022•江岸区模拟)已知:抛物线y=﹣(x+k)(x﹣7)交x轴于A、B(A左B右),交y轴正半轴于点C,且OB=OC.
    (1)如图1,求抛物线的解析式;
    (2)如图2,点P为第一象限抛物线上一点,连接AP,AP交y轴于点D,设P的横坐标为m,CD的长为d,求d与m的函数解析式(不要求写出自变量m的取值范围);
    (3)如图3,在(2)的条件下,过点P作PE⊥y轴于点E,延长EP至点G,使得PG=3CE,连接CG交AP于点F,且∠AFC=45°,连接AG交抛物线于T,求点T的坐标.
    【分析】(1)由图象可得B点坐标,代入函数解析数即可求解;
    (2)表示出点P坐标,由正切公式可表示出d与m的关系,即可求出;
    (3)作出辅助线,得到▱CGPW,利用正切公式求出m与k的值,得到G点坐标,然后表示出∠GAB的正切值,从而求出T点坐标.
    【解答】解:(1)当y=0时,﹣(x+k)(x﹣7)=0,
    解得:x=﹣k或7,
    ∴点B的坐标为(7,0),A(﹣k,0),
    ∵OB=OC,
    ∴OC=OB=7,
    ∴点C的坐标为(0,7),
    将点C的坐标代入抛物线表达式得:﹣(0+k)(0﹣7)=7,
    解得:k=2,
    ∴y=﹣(x+2)(x﹣7)=﹣x2+x+7,
    故抛物线的表达式为y=﹣x2+x+7;
    (2)过点P作PK⊥AB与点K,PE⊥y轴于点E,如图1,
    ∵y=﹣(x+2)(x﹣7),
    ∴P(m,﹣(m+2)(m﹣7)),A(﹣2,0),
    ∴AK=m+2,
    tan∠PAB===,
    ∴DO=AO•tan∠PAB=2()=7﹣m,
    ∴CD=7﹣(7﹣m)=m,
    ∴d=m.
    (3)过点C作WC⊥ED使得WD=PD,TL⊥AB,连接WD,WP,
    设EC=k,
    则PG=3k,
    ∵∠WCD=∠DEP,CD=EP,WD=PD,
    ∴△WCD≌△DEP,
    则△PWD为等腰直角三角形,
    ∴∠WPD=45°=∠CFD,
    ∴WP∥CG,
    ∴四边形CGPW为平行四边形,
    ∴CW=PG=3k=ED,
    ∴CD=2k=PE,
    ∴tan∠APE==,
    由(2)可得tan∠PAB=,
    ∴=,
    ∴m=4,k=2,
    ∴EO=7+2=9,EG=10,
    ∴G(10,9),A(﹣2,0),
    ∴tan∠GAB==,
    再设T坐标为(t,﹣(t+2)(t﹣7)),
    则tan∠TAB==,
    ∴t=,
    ∴T(,).
    2.(2022•沈阳模拟)如图1,在平面直角坐标系中.抛物线y=ax2+bx+2与x轴交于A(﹣4,0)和B(1,0),与y轴交于点C,连接AC,BC.
    (1)求该抛物线的解析式;
    (2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求△MNQ周长的最大值;
    (3)点P为抛物线上的一动点,且∠ACP=45°﹣∠BAC,请直接写出满足条件的点P的坐标.
    【分析】(1)用待定系数法可得抛物线的解析式为y=﹣x2﹣x+2;
    (2)设直线AC解析式为y=kx+2,用待定系数法得直线AC解析式为y=x+2,设M(x,﹣x2﹣x+2),则N(x,x+2),即得MN=﹣x2﹣2x,可证△QMN∽△AOC,有==,故MQ=2MN,NQ=MN,可得△MNQ周长MN+MQ+NQ=MN+2MN+MN=﹣(x﹣2)2+6+2,即得当x=2时,△MNQ周长最大值为6+2;
    (3)在x轴负半轴上取D,使OC=OD,连接CD交抛物线于P,此时∠ACP=45°﹣∠BAC,P是满足条件的点,由C(0,2),D(2,0),得直线CD解析式为y=x+2,即可解得P(﹣5,﹣3),作D关于直线AC的对称点E,连接CE并延长交抛物线于P',由对称性知∠ACP'=∠ACP,P'是满足条件的点,设E(m,n),可得,可解得E(﹣,),从而可得直线CE解析式为:y=x+2,即可解得P'(﹣,).
    【解答】解:(1)把A(﹣4,0)和B(1,0)代入y=ax2+bx+2得:

    解得,
    ∴抛物线的解析式为y=﹣x2﹣x+2;
    (2)由y=﹣x2﹣x+2可得C(0,2),
    设直线AC解析式为y=kx+2,把A(﹣4,0)代入得:
    ﹣4k+2=0,
    解得k=,
    ∴直线AC解析式为y=x+2,
    设M(x,﹣x2﹣x+2),则N(x,x+2),
    ∴MN=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
    ∵MQ∥x轴,MN∥y轴,
    ∴∠MQN=∠CAO,∠NMQ=∠AOC=90°,
    ∴△QMN∽△AOC,
    ∴==,即==,
    ∴MQ=2MN,NQ=MN,
    ∴△MNQ周长MN+MQ+NQ=MN+2MN+MN=(3+)MN=(3+)×(﹣x2﹣2x)=﹣(x+2)2+6+2,
    ∵﹣<0,
    ∴当x=﹣2时,△MNQ周长最大值为6+2;
    (3)在x轴负半轴上取D,使OC=OD,连接CD交抛物线于P,如图:
    ∴D(﹣2,0),∠CDO=45°,此时∠ACP=45°﹣∠BAC,P是满足条件的点,
    ∵C(0,2),D(2,0),
    ∴直线CD解析式为y=x+2,
    由得或,
    ∴P(﹣5,﹣3),
    作D关于直线AC的对称点E,连接CE并延长交抛物线于P',由对称性知∠ACP'=∠ACP,P'是满足条件的点,
    设E(m,n),根据AE=AD,CE=CD可得:

    解得或,
    ∴E(﹣,),
    由E(﹣,),C(0,2)可得直线CE解析式为:y=x+2,
    解得或,
    ∴P'(﹣,),
    综上所述,P的坐标为(﹣5,﹣3)或(﹣,).
    3.(2022•沈阳模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A,B两点(点B在点A的右边),点A坐标为(1,0),抛物线与y轴交于点C,S△ABC=3.
    (1)求抛物线的函数表达式;
    (2)点P(x,y)是抛物线上一动点,且x>3.作PN⊥BC于N,设PN=d,求d与x的函数关系式;
    (3)在(2)的条件下,过点A作PC的平行线交y轴于点F,连接BF,在直线AF上取点E,连接PE,使PE=2BF,且∠PEF+∠BFE=180°,请直接写出P点坐标.
    【分析】(1)根据二次函数的解析式求出C点的坐标,再根据△ABC的面积求出AB的长度,根据A点的坐标再求出B点的坐标,再用待定系数法求出抛物线的解析式即可;
    (2)用待定系数法求出直线BC的解析式,过点P作PD⊥x轴交BC于点E,交x轴于点D,利用三角函数求出PN=PE,设出P点的坐标,得出E点的坐标,然后根据PE求出PN即可得出d和x的函数关系式;
    (3)过点P作PH⊥FE于点H,过点C作CI⊥FE于点I,过点B作BJ⊥FE于点J,设FE交BC于点K,证△PEH∽△BJF,然后证四边形CPHI是矩形,进而得出K点的坐标,求出AF的解析式,再求出直线PC的解析式,联立直线PC和抛物线的解析式求出P点的坐标即可.
    【解答】解:(1)∵抛物线y=ax2+bx+3与y轴交于点C,
    当x=0时,y=3,
    ∴C(0,3),
    即OC=3,
    ∵S△ABC=3,
    ∴×AB×OC=3,
    即AB×3=3,
    ∴AB=2,
    又∵A(1,0)且点B在点A的右边,
    ∴B(3,0),
    把A点和B点坐标代入抛物线y=ax2+bx+3,
    得,
    解得,
    ∴抛物线的解析式为y=x2﹣4x+3;
    (2)由(1)知,C(0,3),B(3,0),
    设直线BC的解析式为y=kx+t,
    代入B点和C点的坐标得,
    解得,
    ∴直线BC的解析式为y=﹣x+3,
    过点P作PD⊥x轴交BC延长线于点E,交x轴于点D,
    ∵OC=OB,
    ∴∠CBO=45°,
    又∵∠COB=∠PDO=90°,且∠CBO=∠DBE=45°,
    ∴∠PEC=45°,且PN⊥CB,
    ∴∠NPE=45°,
    ∴cs∠NPE==cs45°=,
    ∴PN=PE,
    设P(m,m2﹣4m+3),则E(m,﹣m+3),
    ∴PE=m2﹣4m+3﹣(﹣m+3)=m2﹣3m,
    ∴PN=d=PE=(m2﹣3m)=m2﹣m,
    ∴d=x2﹣x;
    (3)如下图,过点P作PH⊥FE于点H,过点C作CI⊥FE于点I,过点B作BJ⊥FE于点J,设FE交BC于点K,
    ∵∠PEF+∠BFE=180°,且∠PEF+∠PEH=180°,
    ∴∠BFE=∠PEH,
    ∵∠PHE=∠CIJ=∠BJH=90°,
    又∵PE=2BF,
    ∴△PEH∽△BJF,
    ∴BJ=PH,
    又∵CP∥AH,且CI∥PH,
    ∴四边形CPHI是矩形,
    ∴CJ=PH,
    又∵∠CJI=∠BKJ,
    ∴BJ=CI,
    ∴BK=CK,
    ∴K(2,1),
    设直线AF的解析式为y=sx+n,
    代入K点和A点的坐标得,
    解得,
    ∴直线AF的解析式为y=x﹣1,
    设直线PC的解析式为y=x+g,
    代入C点坐标得g=3,
    ∴直线PC的解析式为y=x+3,
    联立直线PC和抛物线的解析式得,
    解得或,
    ∴P(5,8).
    4.(2022•成都模拟)如图,已知抛物线表达式为y=ax2﹣ax﹣2a+1(a≠0),直线y=x+与坐标轴交于点A,B.
    (1)若该抛物线过原点,求抛物线的表达式.
    (2)试说明无论a为何值,抛物线一定经过两个定点,并求出这两个定点的坐标.点P为两定点所在直线上的动点,当点P到点A的距离和到直线AB的距离之和最小时,求点P的坐标;
    (3)点N是抛物线上一动点,点M(﹣4,0),且∠NMA+∠OBA=90°,若满足条件的点N的个数恰好为3个,求a的值.
    【分析】(1)将原点(0,0)代入y=ax2﹣ax﹣2a+1(a≠0),即可求解;
    (2)由y=x+中,得A(﹣3,0),B(0,),由y=ax2﹣ax﹣2a+1=a(x2﹣x﹣2)+1=a(x﹣2)(x+1)+1,即得二次函数的图象过两定点C(2,1)和D(﹣1,1);则直线CD为y=1,设P(p,1),过点P作PH⊥AB于H,可得PA2=(p+3)2+1,证明△PHD∽△BOA,根据相似三角形的性质得PH=,PH2=(p+1)2,则PA2+PH2最小时,PA+PH最小,根据二次函数的性质即可求解;
    (3)由∠NMA+∠OBA=90°,知N在过点M且与直线AB平行的直线y=x+2上,或在直线y=﹣x﹣2上,由图得a>0,直线y=x+2与抛物线y=ax2﹣ax﹣2a+1总有两个交点,当直线y=﹣x﹣2与抛物线y=ax2﹣ax﹣2a+1只有1个交点时即满足题意,由ax2﹣ax﹣2a+1=﹣x﹣2的Δ=0,即可求解.
    【解答】解:(1)把(0,0)代入y=ax2﹣ax﹣2a+1得:
    ﹣2a+1=0,
    解得a=,
    ∴抛物线的表达式为y=x2﹣x;
    (2)∵y=ax2﹣ax﹣2a+1=a(x2﹣x﹣2)+1=a(x﹣2)(x+1)+1,
    ∴x=2或x=﹣1时,y=1,
    即二次函数的图象过两定点C(2,1)和D(﹣1,1),
    ∴直线CD为y=1,CD∥x轴,
    在y=x+中,令x=0得y=,令y=0得x=﹣3,
    ∴A(﹣3,0),B(0,),
    ∴OA=3,OB=,AB==,
    如图:过点P作PH⊥AB于H,设P(p,1),
    ∴∠PHD=∠BOA=90°,
    ∵CD∥x轴,
    ∴∠PDH=∠BAO,
    ∴△PHD∽△BOA,
    ∴,
    ∴,
    ∴PH=,PH2=(p+1)2,
    ∵PA2=(p+3)2+1,
    ∴PA2+PH2最小时,PA+PH最小,
    PA2+PH2=(p+3)2+1+(p+1)2=p2+p+=(p+)2+,
    ∴当p=﹣时,点P到点A的距离和到直线AB的距离之和最小,
    此时,点P的坐标为(﹣,1);
    (3)如图,
    ∵∠NMA+∠OBA=90°,∠OAB+∠OBA=90°,
    ∴∠NMA=∠OAB,
    ∴MN∥AB,
    ∵直线AB:y=x+,
    设直线MN为y=x+m,
    ∵点M(﹣4,0),
    ∴﹣2+m=0,解得m=2,
    ∴N在过点M且与直线AB平行的直线y=x+2上,或在直线y=﹣x﹣2上,
    由图得a>0,直线y=x+2与抛物线y=ax2﹣ax﹣2a+1总有两个交点,
    ∴当直线y=﹣x﹣2与抛物线y=ax2﹣ax﹣2a+1只有1个交点时即满足题意,
    由ax2﹣ax﹣2a+1=﹣x﹣2得:ax2+(﹣a)x+3﹣2a=0,
    当Δ=0,即(﹣a)2﹣4a(3﹣2a)=0时,a=或(舍去),
    ∴a的值为.
    5.(2022•成都模拟)如图1所示,直线y=x+3与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.
    (1)求抛物线的解析式;
    (2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB取得最大值时点P的坐标;
    (3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.
    【分析】(1)求得A、B两点坐标,将A、B、C三点坐标代入抛物线的解析式,进而求得结果;
    (2)作PD⊥OB于D,设出点P和Q点坐标,表示出PQ的长,由△BPD∽△BAO表示出PB,从而表示出PQ+PB,进而根据二次函数性质求得结果;
    (3)作CN⊥AD于N,作MT⊥AB于T,根据条件推出BM平分∠ABO,根据S△ABM+S△BOM=S△AOB,求得OM长,进而得出直线CG,BM的解析式,进一步求得结果.
    【解答】解:(1)由题意得:A(﹣4,0),B(0,3),
    ∴,
    ∴,
    ∴y=﹣﹣+3;
    (2)如图1,
    作PD⊥OB于D,
    设Q(m,﹣﹣+3),P(m,m+3),
    ∴PQ=﹣﹣+3﹣(=﹣﹣,
    ∵PD∥OA,
    ∴△BPD∽△BAO,
    ∴=,
    ∴=,
    ∴PB=﹣,
    ∴PQ+PB=﹣﹣m﹣m=﹣﹣,
    ∴当m=﹣=﹣,
    ∵+3=,
    ∴P(﹣,);
    (3)如图2,
    作CN⊥AD于N,作MT⊥AB于T,
    ∵C(1,2),G(﹣1,0),
    ∴CN=GN=2,
    ∴∠CGN=∠NCG=45°,
    ∴∠CFD+∠GDF=45°,
    ∵∠CFD+∠ABH=45°,
    ∴∠GDF=∠ABH,
    ∵∠GDF=∠HBO,
    ∴∠ABH=∠HBO,
    ∴OM=MT,
    ∵S△ABM+S△BOM=S△AOB,
    ∴,
    ∴5OM+3OM=3×4,
    ∴OM=,
    ∴M(﹣,0),
    ∴直线BM的解析式为:y=2x+3,
    ∵C(1,2),G(﹣1,0),
    ∴直线CG的解析式为:y=x+1,
    由2x+3=x+1得,x=﹣2,
    ∴x+1=﹣1,
    ∴H(﹣2,﹣1).
    6.(2022•洪山区模拟)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),与直线l:y=k(x﹣3)+3(k>0)交于D,E两点.
    (1)求抛物线的解析式;
    (2)如图1,连接BD,若△BDE的面积为6,求k的值;
    (3)如图2,若直线l与抛物线交于M,N两点,与BC交于点P,且∠MBC=∠NBC.求P点的坐标.
    【分析】(1)运用待定系数法即可求得答案;
    (2)先根据直线l的解析式得出定点F(3,3),连接BF,则BF∥y轴,BF=3,根据由三角形面积可得xE﹣xD=4,联立得整理得:x2+(k﹣2)x﹣3k=0,再由根与系数关系可得:xD+xE=2﹣k,xD•xE=﹣3k,即可求得k的值;
    (3)设M(x1,﹣x12+2x1+3),N(x2,﹣x22+2x2+3),如图2,分别过点M、N作ME⊥x轴于点E,NQ⊥BF于点Q,可证得∠MBE=∠NBQ,得出tan∠MBE=tan∠NBQ,即=,即可求得k的值,得出直线l的解析式,再利用待定系数法求得直线BC的解析式为y=﹣x+3,联立方程组求解即可得出答案.
    【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0),B(3,0),
    ∴设y=a(x+1)(x﹣3),把C(0,3)代入得,3=a×(0+1)×(0﹣3),
    解得:a=﹣1,
    ∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    (2)∵直线l:y=k(x﹣3)+3,当x=3时,y=3,
    ∴点F(3,3)是直线l上一定点,
    如图1,连接BF,则BF∥y轴,BF=3,
    ∵S△BDF﹣S△BEF=S△BDE=6,
    ∴BF(3﹣xD)﹣BF(3﹣xE)=6,即(xE﹣xD)=6,
    ∴xE﹣xD=4,
    联立得:﹣x2+2x+3=k(x﹣3)+3,
    整理得:x2+(k﹣2)x﹣3k=0,
    ∴xD+xE=2﹣k,xD•xE=﹣3k,
    ∵(xD+xE)2﹣4xD•xE=(xE﹣xD)2,
    ∴(2﹣k)2﹣4×(﹣3k)=42,
    解得:k1=﹣4+2,k2=﹣4﹣2,
    ∵k>0,
    ∴k=﹣4+2;
    (3)设M(x1,﹣x12+2x1+3),N(x2,﹣x22+2x2+3),
    如图2,分别过点M、N作ME⊥x轴于点E,NQ⊥BF于点Q,
    ∵C(0,3),B(3,0),
    ∴OB=OC,
    ∵∠BOC=90°,
    ∴∠OBC=45°,∠CBQ=45°,
    ∵∠MBC=∠NBC,
    ∴∠MBE=∠NBQ,
    ∴tan∠MBE=tan∠NBQ,
    ∴=,
    ∴=,即=,
    ∴x1+x2+x1x2=0,
    由(2)知:x1+x2=2﹣k,x1•x2=﹣3k,
    ∴2﹣k﹣3k=0,
    解得:k=,
    ∴直线l的解析式为y=(x﹣3)+3,
    设直线BC的解析式为y=mx+n,
    则,
    解得:,
    ∴直线BC的解析式为y=﹣x+3,
    联立方程组得,
    解得:,
    ∴P点的坐标为(1,2).
    7.(2022•洪山区模拟)抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B的左边),与y轴的正半轴交于C点,△ABC的面积为6.
    (1)直接写出点A、B的坐标为 A(﹣1,0),B(3,0) ;抛物线的解析式为 y=﹣x2+2x+3 .
    (2)如图1,连结AC,若在第一象限抛物线上存在点D,使点D到直线AC的距离为,求点D的坐标;
    (3)如图2,平行于AC的直线交抛物线于M、N两点,在抛物线上存在点P,当PQ⊥y轴时,PQ恰好平分∠MPN,求P点坐标.
    【分析】(1)令y=0,可求出x的值,进而可得出A,B的坐标;令x=0,可求出y的值,可得出点C的坐标,得出线段OC的长,利用三角形的面积公式可得出a的值;
    (2)过点O作OQ⊥AC于点Q,根据三角形面积的等积法可求出OQ的长,进可得出点D的位置,利用全等三角形的性质求出直线QA′的解析式,联立可求出点D的坐标;
    (3)过点M作ME⊥DE于E,过点N作NF⊥DE于F,根据∠MPE=∠NPE,∠MEP=∠NFP=90°,可得△MPE∽△NPF,设出M、N、P三点的坐标(只设横坐标,纵坐标用横坐标表示),分别用横坐标之差、纵坐标之差表示出两个相似三角形的直角边,列出比例等式;设出MN的解析式,与抛物线方程联立,得出两根之和的关系式,结合前面的比例等式解出P点的横坐标,进而算出纵坐标.
    【解答】解:(1)令y=0,即ax2﹣2ax﹣3a=0,
    解得x=﹣1或x=3,
    ∴A(﹣1,0),B(3,0);
    令x=0,则y=﹣3a,
    ∴C(0,﹣3a),即OC=﹣3a,
    ∴S=×4×(﹣3a)=6,解得a=﹣1,
    ∴函数解析式为:y=﹣x2+2x+3.
    故答案为:A(﹣1,0),B(3,0);y=﹣x2+2x+3.
    (2)由(1)知,A(﹣1,0),B(3,0),C(0,3),
    ∴OA=1,OC=3,AB=,
    过点O作OG⊥AC于点G,
    ∴S△OAC=•OA•OB=•AC•OG
    ∴×1×3=וOG,
    ∴OG=,
    设点D到直线AC的距离h==2OG,
    延长GO到点G′,使得OG′=OG,过点G′作AC的平行线与x轴交于点A′,与抛物线在第一象限内交于点D,
    ∴∠GAO=∠G′A′O,
    ∵∠GOA=∠G′OA′,
    ∴△GAO≌△G′A′O(AAS),
    ∴OA=OA′=1,
    ∴A′(1,0),
    ∵A(﹣1,0),C(0,3),
    ∴直线AC的解析式为:y=3x+3,
    ∴直线A′G′的解析式为:y=3x﹣3,
    令3x﹣3=﹣x2+2x+3,解得x=2或x=﹣3,
    ∵点D在第一象限,
    ∴D(2,3).
    (3)如图,过点M作ME⊥DE于E,过点N作NF⊥DE于F,
    设M(x1,﹣x12+2x1+3),N(x2,﹣x22+2x2+3),P(x0,﹣x02+2x0+3),
    则:ME=﹣x12+2x1+3﹣(﹣x02+2x0+3)=﹣x12+2x1+x02﹣2x0=﹣(x1﹣x0)(x1+x0)+2(x1﹣x0)=(x0+x1﹣2)(x0﹣x1),
    PE=x0﹣x1,
    FN=﹣x02+2x0+3﹣(﹣x22+2x2+3)=﹣(x0+x2﹣2)(x0﹣x2),
    PF=x0﹣x2,
    ∵PQ恰好平分∠MPN,即∠MPE=∠NPE,∠MEP=∠NFP=90°,
    ∴△MPE∽△NPF,
    ∴=,
    ∴=,
    ∴x0=,
    ∵A(﹣1,0),C(0,﹣3),
    ∵MN∥AC,
    ∴设直线MN的解析式为y=3x+b,
    令3x+b=﹣x2+2x+3,
    由消去y整理得:x2+x﹣3+b=0,
    由韦达定理可知:x1+x2=﹣1,
    ∴x=,
    ∴x−2x−3=,
    ∴P(,).
    8.(2022•泰安模拟)如图,抛物线y=mx2+3mx﹣2m+1的图象经过点C,交x轴于点A(x1,0),B(x2,0)(点A在点B左侧),且x2﹣x1=5,连接BC,D是AC上方的抛物线一点.
    (1)求抛物线的解析式;
    (2)连接BC,CD,S△DCE:S△BCE是否存在最大值?若存在,请求出其最大值及此时点D的坐标;若不存在,请说明理由;
    (3)第二象限内抛物线上是否存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍?若存在,求点D的横坐标,若不存在,请说明理由.
    【分析】(1)利用抛物线与x轴的交点的横坐标与一元二次方程根的联系,用一元二次方程根与系数的关系定理列出关于m的方程,解方程即可得出结论;
    (2)过点D作DH⊥x轴于点H,交AC于点M,过点B作BN⊥x轴于点B,交直线AC于点N,利用待定系数法求得直线AC的解析式,设D(a,a+2),则M(a,a+2),求得线段DM,BN的长,利用同高的三角形的面积关系列出S△DCE:S△BCE关于a的等式,利用配方法和二次函数的性质解答即可;
    (3)利用分类讨论的思想方法分两种情况讨论解答:①当∠DCF=2∠BAC时,②当∠FDC=2∠BAC时:取AB的中点P,连接OP,过点D作DR⊥y轴于点R,延长交AC于点G,利用勾股定理的逆定理判定△ABC为直角三角形,∠ACB=90°,设D(a,a+2),则DR=﹣a,OR=a+2,利用直角三角形的边角关系定理列出关于a的方程,解方程即可得出结论.
    【解答】解:(1)∵抛物线y=mx2+3mx﹣2m+1的图象交x轴于点A(x1,0),B(x2,0),
    ∴x1,x2是方程mx2+3mx﹣2m+1=0的两根,
    ∴x1+x2=﹣3,x1•x2=.
    ∵x2﹣x1=5,
    ∴=25.
    即:﹣4x1•x2=25,
    ∴9﹣4×=25.
    解得:m=﹣.
    ∴抛物线的解析式为y=﹣﹣x+2.
    (2)S△DCE:S△BCE存在最大值,此时点D的坐标为(﹣2,3),理由:
    令y=0,则﹣﹣x+2=0,
    解得:x=﹣4或1,
    ∴A(﹣4,0),B(1,0),
    令x=0,则y=2,
    ∴C(0,2).
    设直线AC的解析式为y=kx+b,
    ∴,
    解得:,
    ∴直线AC的解析式为y=x+2.
    过点D作DH⊥x轴于点H,交AC于点M,过点B作BN⊥x轴于点B,交直线AC于点N,如图,
    则DM∥BN,
    ∴△EDM∽△EBN,
    ∴.
    设D(a,a+2),则M(a,a+2),
    ∴DM=(a+2)﹣(a+2)=﹣﹣2a.
    当x=1时,y=×1+2=,
    ∴N(1,).
    ∴BN=.
    ∵等高的三角形的面积比等于底的比,
    ∴S△DCE:S△B∁E=.
    ∴S△DCE:S△B∁E==﹣﹣a=﹣(a+2)2+,
    ∵<0,
    ∴当a=﹣2时,S△DCE:S△BCE有最大值为,此时点D(﹣2,3);
    (3)第二象限内抛物线上存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍,点D的横坐标为﹣2或﹣,理由:
    ∵A(﹣4,0),B(1,0),C(0,2),
    ∴OA=4,OB=1,OC=2,
    ∴AC==2,BC==,AB=OA+OB=5.
    ∵AC2+BC2=25=AB2,
    ∴△ABC为直角三角形,∠ACB=90°.
    取AB的中点P,连接OP,
    则P(﹣,0),
    ∴OP=.
    ∴PA=PB=PC=,
    ∴∠BAC=∠PCA.
    ∵∠CPB=∠BAC+∠PCA,
    ∴∠CPB=2∠BAC.
    过点D作DR⊥y轴于点R,延长交AC于点G,如图,
    ①当∠DCF=2∠BAC时,
    设D(m,m+2),则DR=﹣m,OR=m+2,
    ∴CR=OR﹣OC=m.
    ∵DR⊥y轴,OA⊥y轴,
    ∴DR∥AB,
    ∴∠G=∠BAC.
    ∵∠DCF=∠G+∠CDG,∠DCF=2∠BAC,
    ∴∠CDG=∠G=∠BAC.
    ∵tan∠BAC=,
    ∴tan∠CDR=.
    ∴,

    解得:m=﹣2或0(舍去),
    ∴m=﹣2.
    ∴点D的横坐标为﹣2;
    ②当∠FDC=2∠BAC时,
    ∵∠CPB=2∠BAC,
    ∴∠FDC=∠CPB.
    ∵tan∠CPB=,
    ∴tan∠FDC=,
    ∵tan∠FDC=,
    ∴,
    设FC=4n,则DF=3n,
    ∴CD==5n.
    ∵tan∠G=tan∠BAC=,
    ∴tan∠G=,
    ∴FG=6n.
    ∴CG=FG﹣FC=2n.
    ∵tan∠G=,
    ∴RC=n,
    ∴DR==n,
    ∴,
    解得:a=或0(舍去),
    ∴a=﹣,
    即点D的横坐标为﹣,
    综上,第二象限内抛物线上存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍,点D的横坐标为﹣2或﹣.
    9.(2022•青山区模拟)抛物线y=x2+(t﹣2)x﹣2t(t>0)与x轴交于A、B两点(A在B左边),与y轴交于点 C.
    (1)直接写出A点坐标 (﹣t,0) 、B点坐标 (2,0) 、C点坐标 (0,﹣2t) ;
    (2)如图1,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连接MA,作NH⊥x轴于点H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标;
    (3)如图2,直线y=d(d>0)与抛物线交于第二象限点D,若∠ADB=45°,求d﹣t的值.
    【分析】(1)令y=0,从而得x2+(t﹣2)x﹣2t=0,解这个方程,进而求得A,B两点坐标,当x=0时,可求得C点纵坐标;
    (2)过点M作MK⊥x轴于K,过点Q作QL⊥x轴于L,设M(x1,kx1+b)、N(x2,kx2+b)设点Q的横坐标为n,则Q(n,kn+b),将直线MN的解析式与抛物线的解析式联立,从而得出x1+x2=2+k﹣m,x1x2=﹣2m﹣b,根据△MKA∽△QLH,可得 =,进一步求得结果;
    (3)设D(m,m2+(t﹣2)m﹣2t),作∠DBE=90°,交DA的延长线于E,作DF∥x轴,作BF⊥DF于F,作EG⊥FB交FB的延长线于G,根据△DFB≌△BGE,可推出点E的坐标,根据M,A的坐标,可以得出MA的解析式,将点E坐标代入,从而求得结果.
    【解答】解:(1)令y=0,得x2+(t﹣2)x﹣2t=0,
    解得:x=﹣t或x=2,
    ∴A(﹣t,0),B(2,0),
    令x=0,得y=﹣2t,
    ∴C(0,﹣2t),
    故答案为:A(﹣t,0),B(2,0),C(0,﹣2t);
    (2)如图1,
    过点M作MK⊥x轴于K,过点Q作QL⊥x轴于L,
    ∴∠MKA=∠QLH=90°,
    设M(x1,kx1+b)、N(x2,kx2+b)
    联立 ,
    整理得x2+(m﹣2﹣k)x﹣2m﹣b=0,
    ∴x1+x2=2+k﹣m,x1x2=﹣2m﹣b,
    设点Q的横坐标为n,则Q(n,kn+b),
    ∵MA∥QH,
    ∴∠MAK=∠QHL,
    ∴△MKA∽△QLH,
    ∴,
    即 =,
    整理得kx1x2+b(x1+x2)+kmn+bm﹣bn=0,
    ∴k(﹣2m﹣b)+b(2+k﹣m)+kmn+bm﹣bn=0,
    ∴(km﹣b)(n﹣2)=0,
    ①当km﹣b=0,此时直线为y=k(x+m),过点A(﹣m,0),不符合题意;
    ②当n﹣2=0,此时n=2,Q点的横坐标为2;
    (3)如图2,
    设D(m,m2+(t﹣2)m﹣2t),
    作∠DBE=90°,交DA的延长线于E,作DF∥x轴,作BF⊥DF于F,作EG⊥FB交FB的延长线于G,
    ∴∠F=∠G=90°,∠DBF+∠EBG=90°,
    ∴∠FDB+∠DBF=90°,
    ∴∠FDB=∠EBG,
    ∵∠ADB=45°,
    ∴∠AEB=90°﹣∠DAB=45°,
    ∴BD=BE,
    ∴△DFB≌△BGE(AAS),
    ∴EG=BF=d,BG=DF=2﹣m,
    ∴E(2﹣m,m﹣2),
    设直线DE的解析式为:y=px+q,
    ∴,
    ∴,
    ∴y=(m﹣2)x+(m﹣2)t,
    把x=2﹣d,y=m﹣2代入得,
    m﹣2=(m﹣2)•(2﹣d)(m﹣2)t,
    ∴d﹣t=1.
    10.(2022•丹阳市二模)如图所示,抛物线y=﹣x2+bx+3经过点B(3,0),与x轴交于另一点A,与y轴交于点C.
    (1)求抛物线所对应的函数表达式;
    (2)如图,设点D是x轴正半轴上一个动点,过点D作直线l⊥x轴,交直线BC于点E,交抛物线于点F,连接AC、FC.
    ①若点F在第一象限内,当∠BCF=∠BCA时,求点F的坐标;
    ②若∠ACO+∠FCB=45°,则点F的横坐标为 或5 .
    【分析】(1)利用待定系数法即可求解;
    (2)①作点A关于直线BC的对称点G,连接CG交抛物线于点F.此时,∠BCF=∠BCA.求得G(3.4),利用待定系数法求得直线CF的解析式为y=x+3,联立方程组,即可求解;
    ②分两种情况讨论,由相似三角形的性质和等腰三角形的性质,可求CF的解析式,联立方程可求解.
    【解答】解:(1)∵B(3,0)在抛物线y=﹣x2+bx+3上,
    ∴﹣32+3b+3=0,
    ∴b=2,
    ∴抛物线所对应的函数表达式为y=﹣x2+2x+3;
    (2)①作点A关于直线BC的对称点G,AG交BC于点H,过点H作HI⊥x轴于点I,连接CG交抛物线于点F,此时,∠BCF=∠BCA,
    y=﹣x2+2x+3,令x=0,则y=3,
    令y=0,则﹣x2+2x+3=0,
    解得:x=3或=﹣1,
    ∴A(﹣1,0),B(3,0),C(0,3).
    ∴OB=OC,AB=4,
    ∴△OCB是等腰直角三角形,则∠OCB=∠OBC=45°,
    ∴∠HAB=∠OBC=∠AHI=∠BHI=45°,
    ∴HI=AI=BI=AB=2,
    ∴H(1,2),
    ∴G(3,4),
    设直线CG的解析式为y=kx+3,
    把G(3,4)代入得:4=3k+3,
    解得k=,
    ∴直线CF的解析式为y=x+3,
    ∴,解得,
    ∴点F的坐标为(,);
    ②当点F在x轴上方时,如图,延长CF交x轴于N,
    ∵点B(3,0),点C(0,3),
    ∴OB=OC,
    ∴∠OCB=∠OBC=45°,
    ∵A(﹣1,0),
    ∴OA=1,
    ∵∠ACO+∠FCB=45°,∠CBO=∠FCB+∠CNO=45°.
    ∴∠ACO=∠CNO,
    ∵∠COA=∠CON=90°,
    ∴△CAO∽△NCO,
    ∴,
    ∴,
    ∴ON=9,
    ∴点N(9,0),
    设直线CF的解析式为y=k′x+3,
    把N(9,0)代入得:0=9k′+3,
    解得k′=﹣,
    ∴直线CF的解析式为y=﹣x+3,
    ∴﹣x+3=﹣x2+2x+3,
    ∴x1=0(舍去),x2=,
    ∴点的横坐标为;
    当点F在x轴下方时,如图,设CF与x轴交于点M,
    ∵∠ACO+∠FCB=45°,∠FCB+∠OCM=45°.
    ∴∠ACO=∠OCM,
    ∵OC=OC,∠COA=∠COM=90°,
    ∴△CAO≌△CMO(ASA),
    ∴OM=OA=1,
    ∴点M(1,0),
    同理直线CF解析式为:y=﹣3x+3.
    ∴﹣3x+3=﹣x2+2x+3,
    ∴x1=0(舍去),x2=5,
    ∴点的横坐标为5.
    综上所述,点F的横坐标为或5.
    故答案为:或5.
    11.(2022•东港区校级一模)如图1,抛物线y=ax2+bx+3经过A(1,0)、B(3,0)两点,与y轴交于点C,
    (1)求抛物线的函数解析式;
    (2)如图2,M是x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标;
    (3)如图3,连接AC、BC,在抛物线上是否存在一点N(不与点A重合),使得∠BCN=∠ACB?若存在,求点N的横坐标;若不存在,请说明理由.
    【分析】(1)由于抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,那么可以得到方程ax2+bx+3=0的两根为x=1或x=3,然后利用根与系数即可确定a、b的值.
    (2)利用待定系数法求出直线BC的解析式,设点M(m,m2﹣4m+3),过点M作MN∥y轴,交BC于点N,则N(m,﹣m+3),根据△MOC的面积是△MBC面积的3倍,即可得到点M的坐标;
    (3)过点B作BE⊥AB交CN与E,证明△ABC≌△EBC(ASA),根据全等三角形的性质得BE=AB=2,求得E的坐标,由点E、C的坐标可得直线CN的解析式,联立y=x2﹣4x+3即可求得N点的坐标.
    【解答】解:(1)∵抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,
    ∴方程ax2+bx+3=0的两根为x=1或x=3,
    ∴1+3=﹣,1×3=,
    ∴a=1,b=﹣4,
    ∴二次函数解析式是y=x2﹣4x+3;
    (2)∵二次函数解析式是y=x2﹣4x+3,
    ∴C(0,3).
    设直线BC的解析式为y=kx+t(k≠0),
    则,
    解得:.
    ∴直线BC的解析式为y=﹣x+3.
    设点M(m,m2﹣4m+3),
    过点M作MN∥y轴,交BC于点N,
    ∴N(m,﹣m+3),
    ∴MN=﹣m+3﹣m2+4m﹣3=﹣m2+3m,
    ∵A(1,0)、B(3,0),C(0,3).
    ∴S△MOC=OC•m=m,
    S△MBC=MN•OB=﹣m2+m,
    ∵△MOC的面积是△MBC面积的3倍,
    ∴m=3(﹣m2+m),
    ∴m=0(舍去)或,
    ∴点M的坐标为(,﹣);
    (3)抛物线上存在一点N,使得∠BCN=∠ACB.
    过点B作BE⊥AB交CN与E,
    ∵B(3,0),C(0,3).
    ∴OB=OC=3,
    ∴∠OBC=45°,
    ∴∠OBC=∠EBC=45°,
    ∵BC=BC,∠BCN=∠ACB.
    ∴△ABC≌△EBC(ASA),
    ∴BE=AB=2,
    ∴E(3,2),
    设直线CN的解析式为y=mx+n,
    ∴,解得,
    ∴直线CN的解析式为y=﹣x+3,
    联立y=x2﹣4x+3得,或(舍去),
    ∴抛物线上存在一点N,使得∠BCN=∠ACB.点N的横坐标为.
    12.(2022•宁津县模拟)如图,抛物线与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,对称轴PD交AB与点E.
    (1)求抛物线的解析式;
    (2)如图2,试探究:线段BC上是否存在点M,使∠EMO=∠ABC,若存在,求出点M的坐标;若不存在,请说明理由;
    (3)如图3,点Q是抛物线的对称轴PD上一点,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.
    【分析】(1)用待定系数法即可求解;
    (2)先求出A(4,0),可得抛物线的对称轴为x==,证明∠ACB=∠ABC,△MCO∽△EBM,可得MC•BM=BE•CO,求出MC,即可求解;
    (3)当∠BAQ为直角时,求出直线BQ的表达式为y=x+3,得到n=5;当∠BQA为直角时,利用解直角三角形的方法求出n=;当∠BAQ为直角时,同理可得,n=﹣,进而求解.
    【解答】解:(1)由题意得:,解得,
    故抛物线的表达式为y=﹣x2+x+3;
    (2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,
    故点A的坐标为(4,0),
    ∵点A(4,0),B(0,3),C(﹣1,0),
    ∴抛物线的对称轴为x==,
    直线AB的表达式为y=﹣x+3,
    AB==5=AC.
    ∴∠ACB=∠ABC,点E(,),
    ∵∠CME=∠CMO+∠OME=∠ABC+∠MEB,∠ABC=∠OME,
    ∴∠CMO=∠BEM.
    ∴△MCO∽△EBM,
    ∴,
    ∴MC•BM=BE•CO,
    ∵B(0,3),E(,),
    ∴BE==,
    ∴MC•BM=,
    ∵MC+BM=BC==.
    ∴MC=或MC=.
    ∴=或=,
    如图,过M作MK⊥x轴于K,则MK∥y轴,
    ∴△CMK∽△CBO,
    ∴=或,即=或,
    ∴MK=或,
    ∵B(0,3),C(﹣1,0),
    ∴直线BC的解析式为y=3x+3,
    ∴M的﹣横坐标为﹣或﹣,
    ∴点M的坐标为(﹣,)或(﹣,);
    (3)设点Q的坐标为(,n),
    当∠ABQ为直角时,如图,
    设BQ交x轴于点H,
    ∵∠ABQ=90°,
    ∴∠BAO+∠BHA=90°,
    ∵∠BAO+∠ABO=90°,
    ∴∠ABO=∠BHA,
    ∵tan∠ABO=,
    ∴tan∠BHO=,
    故设直线BQ的表达式为y=x+t,
    ∵该直线过点B(0,3),
    ∴t=3,
    ∴直线BQ的表达式为y=x+3,
    当x=时,y=x+3=5,
    即n=5;
    ②当∠BQA为直角时,
    过点Q作直线MN交y轴于点N,交过点A与y轴的平行线于点M,
    ∵∠BQN+∠MQA=90°,∠MQA+∠MAQ=90°,
    ∴∠BQN=∠MAQ,
    ∴tan∠BQN=tan∠MAQ,
    即,则,
    解得n=;
    ③当∠BAQ为直角时,
    同理可得,n=﹣;
    综上,以点Q、A、B为顶点的三角形是锐角三角形,则△ABQ不为直角三角形,
    故点Q纵坐标n的取值范围为﹣<n<或<n<5.
    13.(2022•南山区模拟)已知抛物线y=ax2+bx+c(a﹣1不为整数)的顶点D(,),AB⊥BC.
    (1)直接得出抛物线解析式.
    (2)如图1所示,点P为抛物线一动点,∠PBC=3∠ABO,求xP;
    (3)如图2,延长DB交x轴于点E,EF平分∠BEO,交线段AB于点F.x轴正半轴有一点S,且AS=12EF.过点F作FG∥x轴,交抛物线的对称轴于点G.该对称轴交x轴于点H.过点G作线段IM、NQ,且NH=MH=IH=QH.线段IQ交直线FG于点R,若线段MN恰好交FG于点F.那么请求出R点坐标.并试问∠EFA与∠RSE是否存在倍数关系?若存在,请分别求出它们的角度大小并写出存在的倍数关系;若不存在,请说明理由.
    【分析】(1)根据顶点写出抛物线的顶点式,再根据AB⊥BC得出OB2=OA•OC,再转化为a和c的关系,解出a,b,c,最后得到抛物线解析式;
    (2)由上一问将∠ABO转化为∠BCO,从而得到点P的两种可能:第一种,在x轴上构造两次等腰三角形从而得到∠3∠BCO,再延长 与抛物线的新交点即为P点;第二种,过点B作x轴平行线,构造∠∠BCO,再在 上再构造2∠BCO即可得到3∠BCO,此时的角的边延长与抛物线的新交点即为P点;
    先根据点D,点B得出直线DB,再得出点E坐标,再根据EF平分∠BEO得出F点坐标,EF的长以及EF与y轴坐标 (为了之后方便求∠EFA做准备),再用 AS=12EF算出S点坐标;接着根据G点与H点的做法得出 FG以及G点坐标;根据NH=MH=IH=QH得出点N,M,I,Q都在以H为圆心的圆上;延长FG后根据HGFG得出点G是弦的中点,于是本题即为著名的“蝴蝶定理”——点G也是FR的中点,得出R的坐标;最后根据之前的准备与各点的坐标算出∠RSE=135°,∠EFA=45°,∠RSE=3∠EFA.
    【解答】解:(1)如图1,设点A(x1,0),C(x2,0)
    由题意,a≠0,其中x1,x2 是一元二次方程ax2+bx+c=0的两个根
    ∵抛物线y=ax2+bx+c的顶点为D(,),
    可设抛物线的顶点式为y+a(x﹣)2+,即y+ax2﹣3ax+,
    ∴与抛物线的一般式y=ax2+bx+c对比,得,
    当x=0时,相应的抛物线的函数值为c,
    点B坐标为(0,C),
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠OBA+∠OBC=90°,
    ∵∠OAB+∠OBA=90°,
    ∴∠OAB=∠OBC,
    ∵∠AOB=∠BOC,
    ∴△OAB∽△OBC,
    ∴∠ABO=∠BCO,=,
    ∴OA2=OB•OC,
    如图1中,点A(x1,0)在y轴左侧,点C(x2,0)在y轴右侧,点B(0,c)在y轴正半轴,
    ∴OA=﹣x1,OB=OC=,OC=x2,其中c>0,即>0,
    ∴a>﹣,
    将以上数值代入到OB2=OA•OC中,得c2=﹣x1x2,
    又x1,x2是一元二次方程ax2+bx+c=0的两个根,
    ∴x1x2=,
    ∴c2=﹣,
    ∴ac=﹣1,
    ∴a•=﹣1,
    ∴a=﹣或﹣,
    ∵a﹣1不为整数,而(﹣)﹣1=﹣2为整数,
    ∴a=﹣舍去,
    抛物线的解析式为y=﹣x2+x+;
    (2)如图1中,
    ∵在第(1)问中已证∠ABO=∠BCO,
    ∴条件变为∠PBC=3∠BCO,
    在第(1)问中已求出抛物线的解析式为y=﹣x2+x+,
    ∴x1,x2是方程﹣x2+x+=0的两根,
    ∴x1=﹣,x2=,
    ∴A(﹣,0),B(0,),C(,0),
    满足∠PBC=3∠BCO的抛物线上的动点P一共有两种情形:
    第一种,如下图所示,连接BC,作线段BC的垂直平分线交x轴于B1点,连接BB1,再作线段BB1的垂直平分线交x轴于B2点,连接BB2,
    ∴BB1=B1C,BB2=B2B1,
    ∴∠BCB1=∠B1BC,∠BB1B2=∠B2BB1,
    ∵∠BB1B2=∠BCB1+∠B1BC=2∠BCB1,即∠BB1O=2∠BCO,
    ∴∠B2B1C=∠B2BB1+∠B1BC=∠BB1B2+∠BCB1=2∠BCB1+∠BCB1=3∠BCB1,
    又点B1,O都在x轴上,∠BCB1=∠BCO,
    ∴∠B2BC=3∠BCO,
    ∴点P只需为直BB2与抛物线的另一个交点即可,此时∠PBC=∠B2BC=3∠BCO,符合题目要求,如下图所示;所以只需求出点B2的坐标,再得出直BB2的解析式,最后得出点P横坐标
    ∵∠BOC=∠BOB1=∠BOB2=90°,B(0,),C(),BB1=B1C,
    ∴OB=,OC=,OB1=OC﹣B1C=﹣BB1,
    在Rt△BOB1中,(BB1)2=OB2+OB12=()2+(﹣BB1)2,
    ∴BB1=,
    ∴B1C=BB1=,OB1=﹣BB1=,
    ∴OB2=OB1﹣B2B1=﹣BB2,
    在Rt△BOB2中,B2B2=OB2+B2O2=()2+(﹣B2B)2,
    ∴B2B=,
    ∴B2B2=BB2=,OB2=﹣BB2=,
    ∴点B2的坐标为(,0),
    设直线BB2的解析式为y=kx+t1,
    ∴,解方程组得,
    直线BB2的解析式为y=﹣x+,
    由,
    解得x=0或,
    ∴满足条件的点P的横坐标为.
    第二种,如图1,过点B作关于抛物线对称轴对称的点B3,点B3仍在抛物线上;再连接BB3,将线段BB3绕着点B逆时针旋转到BB4,使得∠B4BB3=2∠BCO;过点B4作B4B5⊥BB3于B5,
    ∵BB3∥x轴,且B3(3,),BB3=3,
    ∴∠BCO=∠B3BC,
    ∵∠B4BB3=2∠BCO,
    ∴∠B4BC=∠B4BB3+∠B3BC=2∠BO+∠BCO=3∠BCO,
    又∵此时∠PBC=∠B4BC,
    ∴∠PBC=3∠BCO符合题意,
    根据作法,BB4=BB3=3,且在第一种情形已知∠BB1O=2∠BCO,OB=,OB1=,
    ∴∠B4BB3=2∠BCO=∠BB1O,
    ∴tan∠B4BB3=tan∠BB1O===,
    在Rt△B4B5B中,=tan∠B4BB3=,
    ∴B4B5=BB5,
    在Rt△B4B5B中,BB42=BB52+B4B52,
    ∴32=BB52+(BB5)2
    ∴BB5=,B4B5=,
    ∴B4(,)
    ∴直线BB4的解析式为y=x+,
    由,
    解得x=或0,
    ∴满足条件的点P的横坐标为,
    综上所述,满足条件的点P的横坐标为或.
    (3)结论:∠RSE=3∠EFA.
    理由:∵点D(,),点B(0,),
    ∴直线BD的解析式为y=x+,
    ∴点E(﹣,0),
    ∴OE=,OB=
    根据勾股定理,BE==,
    如图3,延长EF交y轴于点F1,过点F1作F1F2⊥BE于点F2,
    ∵EF平分∠BEO,
    ∴EF1平分∠BEO,且OF1=F1F2(角平分线上的点到角的两边距离相等),
    ∵•BF1•OE=•BE•F1F2,
    即(OB﹣OF1)•OE=BE•OF1,
    ∴(﹣OF1)×=•OF1,
    ∴OF1=,
    ∴F1(0,),
    ∴直线EF的解析式为y=x+,
    ∵A(﹣,0),B(0,),
    ∴直线AB的解析式为y=3x+,
    由,解得,
    ∴F(﹣,),
    ∵E(﹣,0),
    ∴EF=,
    ∵x轴正半轴有一点S,且AS=12EF,
    ∴AS=12×,
    ∴AS=,
    ∵A(﹣,0),
    ∴S(3,0),
    ∵FG∥x轴,交抛物线于点G,对称轴交X轴于点H,
    ∴HG⊥FG,G(,),
    ∵NH=MH=IH=QH,
    点I,Q,M,N在以H为圆心,以HI为半径的圆上,
    为方便,将圆中相关部分单独提出,并将直线FG两端延长至与⊙H相交,F侧交点记为F′,R侧交点记为R′,如图2所示,
    ∴FN•FM=FF′•FR′,IR•QR=RR′•RF′,
    过点R作MN的平行线交NQ于点K,交MI的延长线于点L,
    ∴∠M=∠L,∠N=∠GKR,
    ∵∠FGM=∠LGR,∠NGF=∠KGR,
    ∴△FGM∽△LGR,△NGF∽△KGR,
    ∴=,=,
    ∴=,
    ∵∠L=∠M=∠Q,∠IRL=∠QRK,
    ∴△ILR∽△KQR,
    ∴=即LR•KR=IR•QR,
    ∴=,即=,
    ∵F′G=GR′,
    ∴=,
    ∴=,
    ∴﹣1=﹣1,
    ∴FG=RG,
    ∴点G也是FR的中点,
    ∴R(,),
    如图3,过点F1作F1F3⊥AB于点F3,过点R作RR1⊥x轴于点R1.
    ∵R(,),S(3,0),F1(0,),
    ∴R1(,0),SR1=﹣3=,
    ∴RR1=SR1,
    ∴△RR1S是等腰直角三角形,
    ∴∠RSR1=45°,
    ∴∠RSE=180°﹣45°=135°,
    ∴∠EFA=∠F1FF3,
    ∵F(﹣,),F1(0,),
    ∴FF1=,
    ∵∠ABP=∠F1BF3,∠AOB=∠F1F3B=90°,
    ∴△F1F3B∽△ABO,
    ∴=,
    ∴=,
    ∴F1F3=,
    ∴sin∠F1FF3==,
    ∴∠F1FF3=45°,
    ∴∠EFA=45°,
    ∴∠RSE=3∠EFA.
    14.(2022•大连二模)抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m)和点H,﹣1≤m<0,直线x=m﹣1交直线l于点A,交抛物线于点B.
    (1)求c和k的值(用含m的代数式表示);
    (2)过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C.求的取值范围;
    (3)在(2)的条件下,过点B作x轴的平行线,与抛物线另一个交点为D,若点E是线段BD的中点,探究∠MEN与∠ABC的数量关系,并说明理由.
    【分析】(1)把点G(1,m)分别代入y=x2﹣4x+c与y=kx,即可求得答案;
    (2)由题意可得A(m﹣1,m2﹣m),B(m﹣1,m2﹣5m+8),M(m+1,m2﹣m),求得==﹣2m+4,再根据一次函数的性质即可求得的取值范围;
    (3)先求出D(﹣m+5,m2﹣5m+8),E(2,m2﹣5m+8),F(2,m2﹣m),利用三角函数定义可得:tan∠ABC==,tan∠MEF==,tan∠NEF==,得出∠MEF=∠NEF=∠ABC,进而可得∠MEN=2∠ABC.
    【解答】解:(1)∵抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m),
    ∴m=12﹣4×1+c,m=k×1,
    ∴c=m+3,k=m;
    (2)∵直线x=m﹣1交直线l于点A,
    ∴y=m(m﹣1)=m2﹣m,
    ∴A(m﹣1,m2﹣m),
    ∵直线x=m﹣1交抛物线于点B,
    ∴y=x2﹣4x+m+3=(m﹣1)2﹣4(m﹣1)+m+3=m2﹣5m+8,
    ∴B(m﹣1,m2﹣5m+8),
    ∴AB=﹣4m+8,
    ∵过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C,
    ∴C(0,m2﹣m),点M的纵坐标与点A的纵坐标相等,
    ∴m2﹣m=x2﹣4x+m+3,
    解得:x1=m+1,x2=﹣m+3,
    ∴M(m+1,m2﹣m),N(﹣m+3,m2﹣m),
    ∴AM=m+1﹣(m﹣1)=2,
    ∴==﹣2m+4,
    ∵﹣2<0,且﹣1≤m<0,
    ∴的值随着m的增大而减小,
    当m=﹣1时,=﹣2×(﹣1)+4=6,
    当m=0时,=﹣2×0+4=4,
    ∴4≤≤6;
    (3)∠MEN=2∠ABC.理由如下:
    ∵BD∥x轴,
    ∴点D的纵坐标与点B的纵坐标相等,
    ∴m2﹣5m+8=x2﹣4x+m+3,
    解得:x1=m﹣1,x2=﹣m+5,
    ∴D(﹣m+5,m2﹣5m+8),
    ∵点E是线段BD的中点,
    ∴E(2,m2﹣5m+8),
    如图,设直线x=2交直线MN于点F,
    则F(2,m2﹣m),
    ∴MF=NF=﹣m+1,EF=m2﹣5m+8﹣(m2﹣m)=﹣4m+8,
    ∵AC=0﹣(m﹣1)=﹣m+1,AB=﹣4m+8,
    ∴tan∠ABC==,
    ∵tan∠MEF==,tan∠NEF==,
    ∴∠MEF=∠NEF=∠ABC,
    ∴∠MEN=2∠ABC.
    15.(2022•新抚区模拟)如图,直线y=mx+n与抛物线y=﹣x2+bx+c交于A(﹣2,0),B(2,2)两点,直线AB与y轴交于点C.
    (1)求抛物线与直线AB的解析式;
    (2)点P在抛物线上,直线PC交x轴于Q,连接PB,当△PBC的面积是△ACQ面积的2倍时,求点P的坐标;
    (3)点M为坐标轴上的动点,当∠AMB=45°时,直接写出点M的坐标.
    【分析】(1)通过待定系数法求解.
    (2)由一次函数解析式可得点C坐标,从而可得AC=BC,由△PBC的面积是△ACQ面积的2倍可得点P到AB的距离是点Q到AB的距离的2倍,通过分类讨论点P的位置,结合图象求解.
    (3)分别讨论点M在x轴正半轴,y轴负半轴与正半轴三种情况,由AB长度不变,∠AMB角度不变可得∠AMB为弦AB所对圆周角,从而可得AB所对圆心角为直角,进而求解.
    【解答】解:(1)将A(﹣2,0),B(2,2)代入y=﹣x2+bx+c得,
    解得,
    ∴抛物线解析式为y=﹣x2+x+5.
    将A(﹣2,0),B(2,2)代入y=mx+n得,
    解得,
    ∴直线AB解析式为y=x+1.
    (2)①点P在x轴上方是,过点P作x轴平行线,交y轴于点F,交直线AB于点E,
    将x=0代入y=x+1得y=1,
    ∴点C坐标为(0,1),
    ∵A(﹣2,0),B(2,2),
    ∴C为AB中点,即AC=BC,
    ∴当△PBC的面积是△ACQ面积的2倍时,点P到BC的距离是点Q到AC的距离的2倍,
    ∵PE∥OA,
    ∴△EPC∽△AQC,
    ∴=2,
    ∵PF∥OA,
    ∴△PFC∽△OQC,
    ∴==2,
    ∴点P纵坐标为FC+OC=3OC=3,
    将y=3代入y=﹣x2+x+5得3=﹣x2+x+5,
    解得x1=﹣,x2=+,
    ∴点P坐标为(﹣,3)或(+,3).
    ②点P在x轴下方,连接BQ,PK⊥x轴于点K,
    ∵C为AB中点,
    ∴S△AQC=S△BQC,
    ∵△PBC的面积是△ACQ面积的2倍,
    ∴S△PBQ=S△BQC,
    ∴点Q为CP中点,
    又∵∠CQO=∠PQK,∠COQ=∠PKQ=90°,
    ∴△OCQ≌△KPQ,
    ∴CQ=KP,即点P纵坐标为﹣1,
    将y=﹣1代入y=﹣x2+x+5得﹣1=﹣x2+x+5,
    解得x1=,x2=,
    ∴点P坐标为(,﹣1),(,﹣1),
    综上所述,点P坐标为(﹣,3)或(+,3)或(,﹣1)或(,﹣1),
    (3)①点M在x轴正半轴上,作BN⊥x轴于点N,
    ∵∠AMB=45°,
    ∴△BNM为等腰直角三角形,
    ∴BN=NM=2,
    ∴OM=ON+NM=4,
    ∴点M坐标为(4,0).
    ②如图,点M在y轴负半轴,作AG⊥BM于点G,
    ∵AB长度不变,∠AMB=45°,
    ∴点A,B,C在同一个圆上,
    ∵∠AGB=2∠AMB=90°,
    ∴点G为△AMB外接圆圆心,
    ∴GA=GM=GB,即△AMB为等腰直角三角形,
    ∴AM=AB==2,
    在Rt△AOM中,由勾股定理得OM==4,
    ∴点M坐标为(0,﹣4),
    ③点M1与点M关于点C对称,则四边形AMBM1为平行四边形,∠AM1B=45°,
    ∴点M1坐标为(0,6).
    ∴点M坐标为(4,0)或(0,﹣4)或(0,6).
    16.(2022•铁岭模拟)如图1,抛物线y=ax2﹣x+c与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.
    (1)求抛物线的解析式以及直线AD的解析式;
    (2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD于点E、F,当PE+PF取最大值时,求点P的坐标;
    (3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点的坐标.
    【分析】(1)将A(﹣2,0),B(4,0)代入y=ax2﹣x+c,求出抛物线的解析式,求出D点坐标后,利用待定系数法求直线AD的解析式;
    (2)由题意可得PF=PE,设P(x,x2﹣x﹣4),F(x,﹣x﹣2),则PF=﹣x2+2,当PF最大时,PF+PE就最大,由此求解即可;
    (3)在BO上截取ON=OA,连接CN,过点A作AH⊥CN,证明△OCN≌△OCA(SAS),则可推导出∠QAB=∠NCA,再由S△ANC=AN×OC=AH×CN,求出tan∠NCA=,分两种情况讨论:当点Q在AB的下方时,设AQ与y轴交于点I,tan∠NCA=tan∠QAB=,可求点I(0,﹣),求出直线AQ解析式为y=﹣x﹣,联立方程组得:,可求点Q坐标为(,﹣),当点Q在AB的上方时,同理可求直线AQ解析式为:y=x+,联立方程组得:,可求点Q坐标为(,).
    【解答】解:(1)将A(﹣2,0),B(4,0)代入y=ax2﹣x+c,
    得,
    解得,
    ∴抛物线解析式为y=x2﹣x﹣4,
    当x=2时,y=﹣4,
    ∴D(2,﹣4),
    设直线AD的解析式为y=kx+b,
    将A(﹣2,0)D(2,﹣4)代入,
    得,
    解得,
    ∴直线AD的解析式为y=﹣x﹣2;
    (2)根据题意作图,如图1,
    在y=﹣x﹣2上,当x=0时,y=﹣2,
    ∴AD与y轴的交点M的坐标为(0,﹣2),
    ∴OA=OM,∠AOM=90°,
    ∴∠OAB=45°,
    ∵PE∥x轴,PF∥y轴,
    ∴∠PEF=∠OAB=45°,∠EPF=90°,
    ∴PF=PE,
    设P(x,x2﹣x﹣4),F(x,﹣x﹣2),
    ∴PF=﹣x2+2,
    ∵P在AD的下方,
    ∴﹣2<x<2,
    当x=0时,PF有最大值为2,此时PF+PE最大,
    ∴P(0,﹣4);
    (3)在BO上截取ON=OA,连接CN,过点A作AH⊥CN,如图2,
    ∵点A(﹣2,0),点C(0,﹣4),
    ∴OA=2,OC=4,
    ∴AC=2,
    ∵ON=OA,∠CON=∠COA=90°,OC=OC,
    ∴△OCN≌△OCA(SAS),
    ∴∠ACO=∠NCO,CN=AC=2,
    ∴∠NCA=2∠ACO,
    ∵∠QAB=2∠ACO,
    ∴∠QAB=∠NCA,
    ∵S△ANC=AN×OC=AH×CN,
    ∴AH=,
    ∴CH=,
    ∴tan∠NCA=,
    如图3,当点Q在AB的下方时,设AQ与y轴交于点I,
    ∵∠QAB=∠NCA,
    ∴tan∠NCA=tan∠QAB=,
    ∴OI=,
    ∴点I(0,﹣),
    又∵点A(﹣2,0),
    ∴直线AQ解析式为:y=﹣x﹣,
    联立方程组得:,
    解得:或(不合题意舍去),
    ∴点Q坐标为(,﹣),
    当点Q在AB的上方时,同理可求直线AQ解析式为:y=x+,
    联立方程组得:,
    解得:(不合题意舍去)或,
    ∴点Q坐标为(,),
    综上所述:点Q的坐标为(,﹣)或(,).
    17.(2022•平房区二模)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+4与x轴交于点A、B(点A在点B左侧),与y轴交于点C,直线y=﹣x+4经过B、C两点,OB=4OA.
    (1)求抛物线的解析式;
    (2)如图2,点P为第四象限抛物线上一点,过点P作PD⊥x轴交BC于点D,垂足为N,连接PC交x轴于点E,设点P的横坐标为t,△PCD的面积为S,求S与t的函数关系式;
    (3)在(2)的条件下,如图3,过点P作PF⊥PC交y轴于点F,PF=PE.点G在抛物线上,连接PG,∠CPG=45°,连接BG,求直线BG的解析式.
    【分析】(1)求出点A、B的坐标,将A(1,0),B(4,0)代入y=ax2+bx+4,即可求函数的解析式;
    (2)由P(t,t2﹣5t+4)(0<t<4),则D(t,﹣t+4),求出PD的长,然后再求S=×PD×t=﹣t3+2t2;
    (3)过点P作PM⊥y轴交于M,可证明△PFM≌△PEN(ASA),进而求出P点坐标,再由PD∥OC,则=,可求EN的长,能求出tan∠ECB==,过点G作GH⊥PD交PD的延长线于点H,设G(m,m2﹣5m+4),可求点G(5,4),再由待定系数法求直线BG的解析式即可.
    【解答】解:(1)在直线y=﹣x+4中,令x=0,则y=4,
    ∴C(0,4),
    令y=0,则x=4,
    ∴B(4,0),
    ∴OB=4,
    ∵OB=4OA,
    ∴OA=1,
    ∴A(1,0),
    将A(1,0),B(4,0)代入y=ax2+bx+4,
    ∴,
    解得,
    ∴y=x2﹣5x+4;
    (2)∵点P的横坐标为t,
    ∴P(t,t2﹣5t+4)(1<t<4),
    ∵PD⊥x轴,
    ∴D(t,﹣t+4),
    ∴PD=﹣t+4﹣t2+5t﹣4=﹣t2+4t,
    ∴S=×t×(﹣t2+4t)=﹣t3+2t2;
    (3)过点P作PM⊥y轴交于M,
    ∵PN⊥x轴,
    ∴∠NPM=90°,
    ∵PF⊥PC,
    ∴∠FPE=90°,
    ∴∠FPM=∠EPN,
    ∵PE=PF,
    ∴△PFM≌△PEN(ASA),
    ∴PM=PN,
    ∴t=﹣(t2﹣5t+4),
    解得t=2,
    ∴P(2,﹣2),
    ∵PD∥OC,
    ∴∠OCA=∠CPD,
    ∵∠OCB=∠CPG=45°,
    ∴∠PCB=∠DPG,
    又∵PD∥OC,
    ∴=,即=,
    解得EN=,
    ∴BE=2+=,
    过点E作EK⊥BC交于K,
    ∵∠OBC=45°,
    ∴EK=BK=,
    ∴CK=4﹣=,
    ∴tan∠ECB==,
    过点G作GH⊥PD交PD的延长线于点H,
    设G(m,m2﹣5m+4),
    ∴=,
    解得m=2(舍)或m=5,
    ∴G(5,4),
    设直线BG的解析式为y=kx+n,
    ∴,
    解得,
    ∴y=4x﹣16.
    18.(2022•新民市一模)如图,已知抛物线y=﹣x2+bx+c经过点A(0,2),B(8,0),点D是第一象限抛物线上的一点,CD⊥AB于点C.
    (1)直接写出抛物线的表达式 y=﹣++2 ;
    (2)如图1,当CD取得最大值时,求点D的坐标,并求CD的最大值;
    (3)如图2,点D满足(2)的条件,点P在x轴上,且∠APD=45°,直接写出点P的横坐标 或 .
    【分析】(1)将x=0,y=2;x=8,y=0代入得抛物线的表达式,进一步求得结果;
    (2)作DF⊥OB于F,交AB于E,根据△DCE∽△BOA,可得出CD=DE,设D(m,﹣++2),E(m,﹣+2),从而得出DE=(﹣++2)﹣(﹣m+2)=﹣(m﹣4)2+2,进一步求得结果;
    (3)作△APD的外接圆I,连接AI,DI,作IR⊥y轴于R,作DT⊥RI,交RI的延长线于T,设I(a,b),可推出△ARI≌△ITD,从而得出AR=IT=2﹣b,RI=DT=a,进而得出a=3﹣b,a+2﹣b=4,从而求得a,b的值,根据PI2=AI2,进而求得结果.
    【解答】解:(1)将x=0,y=2代入抛物线的表达式得:c=2,
    将x=8,y=0代入得,
    ﹣×82+8b+2=0,
    ∴b=,
    ∴y=﹣+,
    故答案为:y=﹣+;
    (2)如图1,
    作DF⊥OB于F,交AB于E,
    ∴∠DCE=∠BFE=90°,
    ∵∠CED=∠BEF,
    ∴∠D=∠ABO,
    ∴△DCE∽△BOA,
    ∴,
    ∵OB=8,AB===2,
    ∴,
    ∴CD=DE,
    设D(m,﹣++2),
    ∵A(0,2),B(8,0),
    ∴直线AB的表达式为:y=﹣x+2,
    ∴E(m,﹣+2),
    ∴DE=(﹣++2)﹣(﹣m+2)=﹣(m﹣4)2+2,
    ∴当m=4时,DE最大=2,
    ∴CD最大=,
    当x=4时,y=﹣++2=3,
    ∴D(4,3);
    (3)如图2,
    作△APD的外接圆I,连接AI,DI,
    ∴∠AID=2∠APD=90°,
    设I(a,b),P(n,0),
    作IR⊥y轴于R,作DT⊥RI,交RI的延长线于T,
    ∴∠ARI=∠T=90°,
    ∴∠AIR+∠RAI=90°,
    ∵∠AID=90°,
    ∴∠AIR+∠DIT=90°,、
    ∴∠RAI=∠DIT,
    ∵AI=DI,
    ∴△ARI≌△ITD(AAS),
    ∴AR=IT=2﹣b,RI=DT=a,
    ∵DT=3﹣b,
    ∴a=3﹣b,
    ∵RI+IT=4,
    ∴a+2﹣b=4,
    ∴a=,b=,
    ∴I(,),
    由PI2=AI2得,
    (n﹣)2+()2=()2+(2﹣)2,
    ∴n=,
    ∴P点横坐标为:或.
    19.(2022•大庆二模)如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A,B,与y轴交于点C,已知点B(3,0).
    (1)求直线BC及抛物线的函数表达式;
    (2)P为x轴上方抛物线上一点.
    ①若S△PBC=S△ABC,请直接写出点P的坐标;
    ②如图,PD∥y轴交BC于点D,DE∥x轴交AC于点E,求PD+DE的最大值;
    (3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.
    【分析】(1)将点B(3,0)代入y=mx2+(m2+3)x﹣(6m+9),求出m即可求函数是解析式;再由待定系数法求直线BC的解析式即可;
    (2)①过点A作AP∥BC,则S△PBC=S△ABC,直线直线BC和直线AP的交点即为P点;
    ②设点P(t,﹣t2+4t﹣3),则点D(t,t﹣3),,可得=﹣(t﹣)2+,则当时,PD+DE取最大值;
    (3)在抛物线上取点Q,使∠ACQ=45°,过点B作BM⊥BC,交CQ的延长线于点M,过点M作MN⊥x轴于点N,△OBC和△BMN都是等腰直角三角形,由此可知∠OCA=∠BCM,利用三角形函数求出M(4,﹣1),从而能确定直线CQ的解析式为,设点,再将Q点代入函数解析式即可求解.
    【解答】解:(1)将点B(3,0)代入y=mx2+(m2+3)x﹣(6m+9),
    ∴m2+m=0,
    解得m=0(舍)或m=﹣1,
    ∴y=﹣x2+4x﹣3,
    令x=0,则y=﹣3,
    ∴C(0,﹣3),
    设直线BC的函数表达式为y=kx+b,
    将点B(3,0),C(0,﹣3)代入,
    得,
    解得,
    ∴y=x﹣3;
    (2)①如图1,过点A作AP∥BC,则S△PBC=S△ABC,
    ∵直线BC的解析式为y=x﹣3,
    ∴直线AP的表达式为y=x﹣1.
    联立.
    解得(舍)或,
    ∴P(2,1);
    ②由(1)知直线BC的表达式为y=x﹣3,
    设直线AC的解析式为y=k'x+b',
    ∴,
    解得,
    ∴y=3x﹣3,
    设点P(t,﹣t2+4t﹣3),则点D(t,t﹣3),,
    ∴PD=﹣t2+4t﹣3﹣(t﹣3)=﹣t2+3t,,
    ∴=﹣(t﹣)2+,
    ∴当时,PD+DE取最大值;
    (3)如图2,在抛物线上取点Q,使∠ACQ=45°,
    过点B作BM⊥BC,交CQ的延长线于点M,过点M作MN⊥x轴于点N,
    ∵B(3,0),C(0,﹣3)
    ∴OB=OC=3,BC=3,
    ∴△OBC为等腰直角三角形,
    ∴△BMN为等腰直角三角形,
    ∵∠ACQ=45°,
    ∴∠OCA=∠BCM,
    ∵A(1,0),
    ∴,
    ∴,
    ∵,
    ∴,
    ∴BN=NM=1,
    ∴M(4,﹣1),
    ∴直线CQ的解析式为,
    设点,
    ∴,
    整理得:,
    解得或n=0(舍),
    ∴.
    20.(2022•运城二模)如图,已知抛物线y=ax2+bx﹣8与x轴交于点A(﹣2,0),B(8,0)两点,与y轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线PE∥y轴,交直线BC于点D,交x轴于点F,以PD为斜边,在PD的右侧作等腰直角△PDF.
    (1)求抛物线的表达式,并直接写出直线BC的表达式;
    (2)设点P的横坐标为m(0<m<3),在点P运动的过程中,当等腰直角△PDF的面积为9时,请求出m的值;
    (3)连接AC,该抛物线上是否存在一点M,使∠ACO+∠BCM=∠ABC,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.
    【分析】(1)利用待定系数法求出抛物线的解析式,再求出C点坐标,然后利用待定系数法求直线BC的表达式即可;
    (2)设出P(m,﹣3m﹣8),D(m,m﹣8),然后根据两点间距离公式表示出PD长,再根据等腰直角三角形的性质列出△PDF的面积表达式,结合面积为9建立方程求解,即可解决问题;
    (3)分点M在BC的上方和点M在BC的下方两种情况讨论,根据题意画出图形,构造三角形全等,求出直线CM上的一点坐标,则可利用待定系数法求出直线CM的解析式,最后和抛物线的解析式联立求解,即可求出点M的坐标.
    【解答】解:(1)把A(﹣2,0),B(8,0)分别代入y=ax2+bx﹣8中,
    则,
    解得,
    ∴抛物线的表达式为y=x2﹣3x﹣8;
    令x=0.则y=﹣8,
    ∴C(0,﹣8),
    设直线BC解析式为y=kx﹣8(k≠0),
    把B(8,0)代入解析式得,8k﹣8=0,
    解得:k=1,
    ∴直线BC解析式为y=x﹣8;
    (2)∵点P的横坐标为m(0<m<3),
    ∴P(m,﹣3m﹣8),D(m,m﹣8),
    ∴PD=(m﹣8)﹣(﹣3m﹣8)=﹣+4m,
    过点P作PN⊥PD于N,
    ∵△PDF是等腰直角三角形,PD为斜边,
    ∴PN=DN,
    ∴FN=PD,
    ∴S△PDF=PD•FN=PD2=9,
    ∴PD=6,
    ∴﹣+4m=6,
    解得:m1=6,m2=2,
    又∵0<m<3,
    ∴m=2;
    (3)存在,理由如下:由(2)得△BOC为等腰直角三角形,
    ∴∠ACO+∠BCM=∠ABC=∠BCO=45°,
    ①如图,当点M在BC的上方时,设CM与x轴交于一点D,
    ∵∠ACO+∠BCD=∠ABC=∠BCO=∠OCD+∠BCD,
    ∴∠ACO=∠DCO,
    ∵OC⊥AD,OC=OC,
    ∴△AOC≌△COD(ASA),
    ∴OD=OA=2,
    ∴D(2,0),
    设直线CM解析式为y=nx﹣8(n≠0),
    则2n﹣8=0,
    解得:n=4,
    ∴直线CM解析式为y=4x﹣8,
    则,
    解得:或(舍去),
    ∴此时点M的坐标为(14,48);
    ②如图,当点M在BC的下方时,
    过B作x轴的垂线,过C作y轴的垂线,两条垂线交于一点H,作∠HCK=∠ACO,CK交抛物线与点M,
    由(2)得△BOC为等腰直角三角形,
    ∴∠ABC=∠BCO=45°,
    ∴∠BCH=45°,
    即∠BCM+∠MCH﹣45°,
    ∵∠ACO+∠BCM=∠ABC=45°,
    ∴∠ACQ=∠MCH,
    又∵∠AOC=∠KHC=90°,
    ∵OB=OC.∠COB=∠OCH=∠OBH=90°,
    ∴四边形OCHB正方形,
    ∵OC=OH,
    ∴△AOC≌△KHC(ASA),
    ∴KH=OA=2,
    ∴BK=BH﹣KH=8﹣2=6,
    ∴K(8,﹣6),
    设直线CK的解析式为y=ex﹣8(e≠0),
    ∴﹣6=8e﹣8,
    解得:e=,
    ∴直线CK的解析式为y=x﹣8,
    则,
    解得或(舍去),
    ∴M(,﹣);
    综上所述,点M坐标为(14,48)或(,﹣).
    21.(2022•永安市模拟)已知二次函数y=x2+(k﹣2)x﹣2k.
    (1)当此二次函数的图象与x轴只有一个交点时,求该二次函数的解析式;
    (2)当k>0时,直线y=kx十2交抛物线于A,B两点(点A在点B的左侧),点P在线段AB上,过点P做PM垂直x轴于点M,交抛物线于点N.
    ①求PN的最大值(用含k的代数式表示);
    ②若抛物线与x轴交于E,F两点,点E在点F的左侧.在直线y=kx+2上是否存在唯一一点Q,使得∠EQO=90°?若存在,请求出此时k的值;若不存在,请说明理由.
    【分析】(1)可求得二次函数与x轴的交点为(2,0)(﹣k,0),进而得出结果;
    (2)①设点P(m,km+2),从而表示出点N的坐标,进而表示出PN的函数关系式,进一步求得结果;
    ②只需以OE为直径的圆与直线y=kx+2相切,即OE的中点I到GH的距离等于半径,根据面积法可求得k的值.
    【解答】解:(1)当y=0时,x2+2(k﹣2)x﹣2k=0,
    ∴(x﹣2)•(x+k)=0,
    ∴x1=2,x2=﹣k,
    ∵二次函数的图象与x轴只有一个交点,
    ∴k=﹣2,
    ∴该二次函数的解析式为y=x2﹣4x+4;
    (2)①设点P的坐标为(m,km+2),则点N的坐标为(m,m2+(k﹣2)m﹣2k),
    ∴PN=km+2﹣[m2+(k﹣2)m﹣2k]=﹣m2+2m+2+2k=﹣(m﹣1)2+3+2k,
    ∴当m=1时,PN取得最大值,最大值为3+2k;
    ②如图,
    存在唯一的Q点,使∠EQO=90°:
    设直线y=kx+2交x周于G,交y轴于H,OE的中点记作I,作IQ⊥GH于Q,连接IH,
    当IQ=,∠EQO=90°且有唯一的点Q,
    当y=0时,kx+2=0,
    ∴x=﹣,
    ∴OG=,
    当x=0时,y=2,
    ∴OH=2,
    ∴GH==,
    由(1)知:OE=k,
    ∴OI=IQ=,
    ∵S△GOH=S△HOI+S△GIH,
    ∴,
    ∴2×=2×+,
    ∴k=.
    22.(2022•南岗区三模)在平面直角坐标系中,点O为坐标系的原点,经过点B(3,6)的抛物线与x轴的正半轴交于点A.
    (1)求抛物线的解析式;
    (2)如图1,点P为第一象限抛物线上的一点,且点P在抛物线对称轴的右侧,连接OP,AP,设点P的横坐标为t,△OPA的面积为S,求S与t的函数解析式(不要求写出自变量t的取值范围);
    (3)如图2,在(2)的条件下,当时,连接BP,点C为线段OA上的一点,过点C作x轴的垂线交BP的延长线于点D,连接OD,BC,若,求点C的坐标.
    【分析】(1)根据抛物线经过点B(3,6)得:6=﹣×32+3b,解得抛物线的解析式为:y=﹣x2+x;
    (2)过点P作PE⊥x轴,垂足为点E,由点P的横坐标为t,得P(t,﹣t2+t),PE=﹣t2+t,由y=﹣x2+x可得点A的坐标为(7,0),故S=OA•PE=×7•(﹣t2+t)=﹣t2+t;
    (3)过点P作PE⊥x轴,垂足为点E,过点B作FG⊥y轴,垂足为点F,FG交EP的延长线于点G,取OD的中点M,连接BM,CM,延长BM交x轴于点N,延长CM至点H,当S=时,结合(2)可得t=5,点P的坐标为(5,5),在Rt△OBF中,,在Rt△PBG中,,即得∠BOF=∠PBG,设∠CBD=2α,由,可证明∠CMN=90°﹣2α=∠OMN,从而BN⊥x轴,CN=ON,又CN=ON=3,即得OC=6,点C的坐标为(6,0).
    【解答】解:(1)根据题意得:6=﹣×32+3b,
    解得:b=,
    ∴抛物线的解析式为:y=﹣x2+x;
    (2)过点P作PE⊥x轴,垂足为点E,如图:
    ∵点P在抛物线y=﹣x2+x上,点P的横坐标为t,
    ∴P(t,﹣t2+t),
    ∴PE=﹣t2+t,
    在y=﹣x2+x中,令y=0,得﹣x2+x=0,
    解得x1=0,x2=7,
    ∴点A的坐标为(7,0),
    ∴S=OA•PE=×7•(﹣t2+t)=﹣t2+t;
    答:S与t的函数解析式为S=﹣t2+t;
    (3)过点P作PE⊥x轴,垂足为点E,过点B作FG⊥y轴,垂足为点F,FG交EP的延长线于点G,取OD的中点M,连接BM,CM,延长BM交x轴于点N,延长CM至点H,如图:,
    当S=时,=﹣t2+t,
    解得t1=2,t2=5,
    ∵抛物线y=﹣x2+x的对称轴为直线x=,点P在对称轴的右侧,
    ∴t=5,
    ∴点P的坐标为(5,5),
    ∵FG⊥y轴,
    ∴∠BFO=∠PEA=90°,
    又∵∠FOA=90°,
    ∴∠BFO+∠FOA=180°,
    ∴FG∥OA,
    ∴∠G=∠PEA=90°,
    ∵点P的坐标为(5,5),
    ∴PE=OE,
    ∴∠POE=∠OPE=45°,
    ∵B(3,6),
    ∴BG=2,PG=1,
    在Rt△OBF中,,
    在Rt△PBG中,,
    ∴tan∠BOF=tan∠PBG,
    ∴∠BOF=∠PBG,
    又∵∠BOF+∠OBF=90°,
    ∴∠PBG+∠OBF=90°,
    ∴∠OBP=90°,
    设∠CBD=2α,
    ∵,
    ∴∠ODB=∠CBD+POA=α+45°,
    ∵∠OBD=∠OCD=90°,
    ∴BM=OM=DM=CM,
    ∴∠MBD=∠BDM=α+45°,
    ∴∠MCB=∠MBC=α+45°﹣2α=45°﹣α,∠OMN=∠BMD=180°﹣2(α+45°)=90°﹣2α,∠BMO=2α+90°,
    ∴∠BMH=∠MCB+∠MBC=90°﹣2α,
    ∴∠OMH=∠BMO﹣∠BMH=(2α+90°)﹣(90°﹣2α)=4α,
    ∴∠CMN=180°﹣∠OMH﹣∠OMN=180°﹣4α﹣(90°﹣2α)=90°﹣2α=∠OMN,
    ∵OM=CM,
    ∴BN⊥x轴,CN=ON,
    ∴CN=ON=3,
    ∴OC=6,
    ∴点C的坐标为(6,0).
    23.(2022•同安区二模)已知抛物线y=ax2+bx+c(a<0)过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.
    (1)求a、b满足的关系式;
    (2)对于抛物线上的任意两点P1(x1,y1),P2(x2,y2),当y1=y2时,恒有|x1﹣1|=|x2﹣1|.
    ①求抛物线解析式;
    ②AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使得∠OPB=∠AHB.若存在,求出一个符合条件的点P的坐标;若不存在,请说明理由.
    【分析】(1)利用待定系数法解答即可;
    (2)①利用已知条件可知抛物线的对称轴为直线x=1,利用二次函数的性质与(1)中的结论得到关于a,b的关系式即可求得a,b的值,则结论可得;
    ②利用待定系数法求得直线AC,BD的解析式,联立即可求得点H的坐标,过点H作HE⊥OB于点E,过点A作AF⊥HB于点F,利用点的坐标的特征,勾股定理和相似三角形的判定与性质求得线段HB,HF,AF的长度,利用等腰直角三角形的性质可得∠AHB=45°,利用∠OCB=45°,即可得到当点P与点C重合时,满足∠OPB=∠AHB=45°,由此可求得满足条件的点P 的坐标.
    【解答】解:(1)∵抛物线y=ax2+bx+c(a<0)过点A(﹣1,0)和C(0,3),
    ∴,
    ∴a﹣b+3=0,
    ∴a﹣b=﹣3;
    (2)①∵对于抛物线上的任意两点P1(x1,y1),P2(x2,y2),当y1=y2时,恒有|x1﹣1|=|x2﹣1|,
    ∴该抛物线的对称轴为直线x=1.
    ∴=1.
    ∴b=﹣2a.
    ∵a﹣b=﹣3,
    ∴a﹣(﹣2a)=﹣3,
    ∴a=﹣1.
    ∴b=﹣2a=2.
    ∴抛物线解析式为y=﹣x2+2x+3;
    ②在x轴上方的抛物线上存在点P,使得∠OPB=∠AHB,符合条件的点P的坐标为(0,3).理由:
    令y=0,则﹣x2+2x+3=0,
    解:x=3或﹣1,
    ∴B(3,0).
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4).
    设直线AC的解析式为y=dx+e,
    ∴,
    解得:,
    ∴直线AC的解析式为y=3x+3.
    设直线BD的解析式为y=kx+n,

    解得:.
    ∴直线BD的解析式为y=﹣2x+6.
    ∴,
    解得:,
    ∴H(,).
    过点H作HE⊥OB于点E,过点A作AF⊥HB于点F,如图,
    则HE=,OE=.
    ∵B(3,0),A(﹣1,0),C(0,3),
    ∴OB=3,OC=3,OA=1.
    ∴BE=OB﹣OE=,AB=OA+OB=4.
    ∴BH==.
    ∵∠HEB=∠OFB=90°,∠HBE=∠OBF,
    ∴△HEB∽△OFB,
    ∴,
    ∴,
    ∴BF=,AF=.
    ∴HF=HB﹣BF=,
    ∴AF=HF,
    ∵AF⊥BD,
    ∴△AFH为等腰直角三角形,
    ∴∠AHB=45°.
    ∵OB=OC=3,∠COB=90°,
    ∴∠OCB=∠OBC=45°,
    ∴当点P与点C重合时,满足∠OPB=∠AHB=45°,
    ∴在x轴上方的抛物线上存在点P,使得∠OPB=∠AHB,符合条件的点P的坐标为(0,3).
    24.(2022•伊宁市模拟)抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(3,0),与y轴交于点C.
    (1)求该抛物线的函数表达式;
    (2)如图1,点M是第一象限内抛物线上一动点,过点M作MF⊥x轴于点F,作ME⊥y轴于点E,当矩形MEOF周长最大时,求M点坐标.
    (3)如图2,点P是该抛物线上一动点,连接PC,AC,直接写出使得∠PCB=∠ACO时点P的坐标.
    【分析】(1)把点A(﹣1,0)和点B(3,0)代入y=﹣x2+bx+c解方程组即可得到结论;
    (2)设M(m,﹣m2+2m+3),求得F(m,0),E(0,﹣m2+2m+3),根据矩形的性质得到EM=OF=m,OE=MF=﹣m2+2m+3,求得矩形MEOF的周长=﹣2(m﹣)2+,当m=时,矩形MEOF周长最大,于是得到结论;
    (3)在y=﹣x2+2x+3中,令x=0,则y=3,求得C(0,3),根据勾股定理得到BC=3,如图2,作QB⊥CB,QH⊥x轴,得到∠CBQ=∠BHQ=90°,根据勾股定理得到BQ=,根据相似三角形的性质得到BH=QH=1,求得Q(4,1)或(2,﹣1),于是得到直线CQ函数为y=﹣x+3或y=﹣2x+3,解方程组即可得到结论.
    【解答】解:(1)把点A(﹣1,0)和点B(3,0)代入y=﹣x2+bx+c得,,
    解得,
    ∴该抛物线的函数表达式为y=﹣x2+2x+3;
    (2)∵点M是第一象限内抛物线上一动点,
    ∴设M(m,﹣m2+2m+3),
    ∵MF⊥x轴于点F,作ME⊥y轴于点E,
    ∴F(m,0),E(0,﹣m2+2m+3),
    ∵四边形MEOF是矩形,
    ∴EM=OF=m,OE=MF=﹣m2+2m+3,
    ∴矩形MEOF的周长=2m+2(﹣m2+2m+3)=﹣2m2+6m+6=﹣2(m﹣)2+,
    ∴当m=时,矩形MEOF周长最大,
    ∴M点坐标为(,);
    (3)在y=﹣x2+2x+3中,令x=0,则y=3,
    ∴C(0,3),
    ∵B(3,0),
    ∴OC=3,OB=3,
    ∴BC=3,
    如图2,在CP上找一点Q,作QB⊥CB,QH⊥x轴
    ∴∠CBQ=∠BHQ=90°,
    ∵∠PCB=∠ACO,∠AOC=∠CBQ=90°,
    ∴△AOC∽△QBC,
    ∴BC:BQ=CO:AO=3:1,
    ∴BQ=,
    ∵∠OCB+∠CBO=∠CBO+∠QBH=90°,
    ∴∠OCB=∠QBH,
    ∴△COB∽△BHQ,
    ∴,
    ∴==,
    ∴BH=QH=1,
    ∴Q(4,1)或(2,﹣1),
    则直线CQ函数为y=﹣x+3或y=﹣2x+3,
    解或,
    得或,
    ∴P坐标为(,)或(4,﹣5).

    相关试卷

    2024年中考数学二轮复习压轴题培优练习专题16二次函数与动点综合问题(2份打包,原卷版+教师版):

    这是一份2024年中考数学二轮复习压轴题培优练习专题16二次函数与动点综合问题(2份打包,原卷版+教师版),文件包含2024年中考数学二轮复习压轴题培优练习专题16二次函数与动点综合问题原卷版doc、2024年中考数学二轮复习压轴题培优练习专题16二次函数与动点综合问题教师版doc等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。

    2023年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(教师版):

    这是一份2023年中考数学二轮复习压轴题培优练习专题15二次函数与角综合问题(教师版),共96页。试卷主要包含了角的数量关系问题,角的最值问题等内容,欢迎下载使用。

    中考数学二轮压轴培优专题 二次函数的计算与证明综合问题(2份打包,教师版+原卷版):

    这是一份中考数学二轮压轴培优专题 二次函数的计算与证明综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数的计算与证明综合问题教师版doc、中考数学二轮压轴培优专题二次函数的计算与证明综合问题原卷版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map