2024年高考押题预测卷—数学(九省新高考新结构卷02)(考试版)
展开(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则( )
A.B.C.D.
2.若,则( )
A.B.C.D.
3.已知,,若,则( )
A.1B.C.D.
4.若,则( )
A.100B.110C.120D.130
5.已知等差数列的前项和为,且,,则( )
A.14B.16C.18D.20
6.折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE,AC所在圆的半径分别是3和6,且,则该圆台的体积为( )
A.B.C.D.
7.已知直线与圆相交于M,N两点.则的最小值为( )
A.B.C.4D.6
8.已知可导函数的定义域为,为奇函数,设是的导函数,若为奇函数,且,则( )
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知复数z,下列说法正确的是( )
A.若,则z为实数B.若,则
C.若,则的最大值为2D.若,则z为纯虚数
10.已知函数的图象在y轴上的截距为,是该函数的最小正零点,则( )
A.
B.恒成立
C.在上单调递减
D.将的图象向右平移个单位,得到的图象关于轴对称
11.如图,已知抛物线的焦点为 ,抛物线 的准线与 轴交于点 ,过点 的直线 (直线 的倾斜角为锐角)与抛物线 相交于 两点(A在 轴的上方,在 轴的下方),过点 A作抛物线 的准线的垂线,垂足为 ,直线 与抛物线 的准线相交于点 ,则( )
A.当直线 的斜率为1时,B.若,则直线的斜率为2
C.存在直线 使得 D.若,则直线 的倾斜角为
第二部分(非选择题 共92分)
三、填空题:本题共3小题,每小题5分,共15分。
12.2024年1月九省联考的数学试卷出现新结构,其中多选题计分标准如下:①本题共3小题,每小题6分,满分18分;②每道小题的四个选项中有两个或三个正确选项,全部选对得6分,有选错的得0分;③部分选对得部分分(若某小题正确选项为两个,漏选一个正确选项得3分;若某小题正确选项为三个,漏选一个正确选项得4分,漏选两个正确选项得2分).已知在某次新结构数学试题的考试中,小明同学三个多选题中第一小题确定得满分,第二小题随机地选了两个选项,第三小题随机地选了一个选项,则小明同学多选题所有可能总得分(相同总分只记录一次)的中位数为 .
13.在直三棱柱中,,,过作该直三棱柱外接球的截面,所得截面的面积的最小值为 .
14.在中,内角,,所对的边分别为,,,已知,则= ;若,则面积的最大值为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
15.(本小题满分13分)已如曲线在处的切线与直线垂直.
(1)求的值;
(2)若恒成立,求的取值范围.
16.(本小题满分15分)为促进全民阅读,建设书香校园,某校在寒假面向全体学生发出“读书好、读好书、好读书”的号召,并开展阅读活动.开学后,学校统计了高一年级共1000名学生的假期日均阅读时间(单位:分钟),得到了如下所示的频率分布直方图,若前两个小矩形的高度分别为0.0075,0.0125,后三个小矩形的高度比为3:2:1.
(1)根据频率分布直方图,估计高一年级1000名学生假期日均阅读时间的平均值(同一组中的数据用该组区间的中点值为代表);
(2)开学后,学校从高一日均阅读时间不低于60分钟的学生中,按照分层抽样的方式,抽取6名学生作为代表分两周进行国旗下演讲,假设第一周演讲的3名学生日均阅读时间处于[80,100)的人数记为,求随机变量的分布列与数学期望.
17.(本小题满分15分)如图,在四棱锥中,底面是边长为2的正方形,,点在上,点为的中点,且平面.
(1)证明:平面;
(2)若,求平面与平面夹角的余弦值.
18.(本小题满分17分)已知椭圆,直线与椭圆交于A、B两点,为坐标原点,且,,垂足为点.
(1)求点的轨迹方程;
(2)求面积的取值范围.
19.(本小题满分17分)置换是代数的基本模型,定义域和值域都是集合的函数称为次置换.满足对任意的置换称作恒等置换.所有次置换组成的集合记作.对于,我们可用列表法表示此置换:,记.
(1)若,计算;
(2)证明:对任意,存在,使得为恒等置换;
(3)对编号从1到52的扑克牌进行洗牌,分成上下各26张两部分,互相交错插入,即第1张不动,第27张变为第2张,第2张变为第3张,第28张变为第4张,,依次类推.这样操作最少重复几次就能恢复原来的牌型?请说明理由.
2024年高考押题预测卷—数学(九省新高考新结构卷03)(考试版): 这是一份2024年高考押题预测卷—数学(九省新高考新结构卷03)(考试版),共5页。试卷主要包含了记为等比数列的前项和,若,则,己知,,则,若是样本数据的平均数,则,已知的部分图象如图所示,则等内容,欢迎下载使用。
2024年高考押题预测卷—数学(九省新高考新结构卷02)(全解全析): 这是一份2024年高考押题预测卷—数学(九省新高考新结构卷02)(全解全析),共15页。试卷主要包含了若,则,已知复数z,下列说法正确的是等内容,欢迎下载使用。
2024年高考押题预测卷—数学(九省新高考新结构卷02)(参考答案): 这是一份2024年高考押题预测卷—数学(九省新高考新结构卷02)(参考答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。