2024年中考数学必考考点专题13 函数基础知识篇(原卷版)
展开知识回顾
变量与常量:
在一个变化过程中,发生变化的量叫做变量。固定不变的量叫做常量。
微专题
1.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是( )
A.2是变量B.π是变量C.r是变量D.C是常量
考点二:函数基础知识之自变量的取值范围与函数值
知识回顾
函数的概念:
设在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量。
自变量的取值范围:
使函数表示有意义。
①分母不能为0。
②被开方数大于等于0。
③幂的底数和指数不能同时为0。
满足实际问题的实际意义。
函数值:
函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值。
微专题
2.(2022•黄石)函数y=的自变量x的取值范围是( )
A.x≠﹣3且x≠1B.x>﹣3且x≠1C.x>﹣3D.x≥﹣3且x≠1
3.(2022•丹东)在函数y=中,自变量x的取值范围是( )
A.x≥3B.x≥﹣3C.x≥3且x≠0D.x≥﹣3且x≠0
4.(2022•牡丹江)函数y=中,自变量x的取值范围是( )
A.x≤﹣2B.x≥﹣2C.x≤2D.x≥2
5.(2022•恩施州)函数y=的自变量x的取值范围是( )
A.x≠3B.x≥3C.x≥﹣1且x≠3D.x≥﹣1
6.(2022•连云港)函数y=中自变量x的取值范围是( )
A.x≥1B.x≥0C.x≤0D.x≤1
7.(2022•黑龙江)函数自变量x的取值范围是( )
A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3
8.(2022•无锡)函数y=中自变量x的取值范围是( )
A.x>4B.x<4C.x≥4D.x≤4
9.(2022•安顺)要使函数y=在实数范围内有意义,则x的取值范围是 .
10.(2022•哈尔滨)在函数y=中,自变量x的取值范围是 .
11.(2022•巴中)函数y=中自变量x的取值范围是 .
考点三:函数基础知识之函数的三种表示方法:
知识回顾
解析式法表达函数:
根据题意列函数表达式。函数表达式等号左边不能出现平方与绝对值以及正负号,右边不能出现正负号。
列表法表达函数:
表格中不同自变量不能对应同一函数值。
图像法表达函数:
①判断图像是否为函数图像,只需做一条与轴垂直的直线,看直线与图像的交点个数,若出现两个即两个以上的交点,则不是函数图像。
②函数图像与信息表达。
微专题
12.(2022•益阳)已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是( )
A.y=2xB.y=x﹣1C.y=D.y=x2
13.(2022•大连)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是( )
A.y=0.1xB.y=﹣0.1x+30
C.y=D.y=﹣0.1x2+30x
14.(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为( )
A.y=x+50B.y=50xC.y=D.y=
15.(2022•巴中)甲、乙两人沿同一直道从A地到B地,在整个行程中,甲、乙离A地的距离S与时间t之间的函数关系如图所示,下列说法错误的是( )
A.甲比乙早1分钟出发
B.乙的速度是甲的速度的2倍
C.若甲比乙晚5分钟到达,则甲用时10分钟
D.若甲出发时的速度为原来的2倍,则甲比乙提前1分钟到达B地
16.(2022•青海)2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是( )
A.B.
C.D.
17.(2022•河池)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是( )
A.B.
C.D.
18.(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为( )
A.12B.16C.20D.24
19.(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现( )
A.海拔越高,大气压越大
B.图中曲线是反比例函数的图象
C.海拔为4千米时,大气压约为70千帕
D.图中曲线表达了大气压和海拔两个量之间的变化关系
第19题 第20题
20.(2022•北京)下面的三个问题中都有两个变量:
①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;
②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;
③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.
其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )
①②B.①③C.②③D.①②③
21.(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是( )
A.B.
C.D.
22.(2022•哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为( )
第22题 第23题
A.150kmB.165kmC.125kmD.350km
23.(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是( )
A.甲车行驶到距A城240km处,被乙车追上
B.A城与B城的距离是300km
C.乙车的平均速度是80km/h
D.甲车比乙车早到B城
24.(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为( )
A.B.
C.D.
25.(2022•雅安)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况( )
A.B.
C.D.
26.(2022•永州)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )
A.B.
C.D.
27.(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为( )
A.50m/minB.40m/minC.m/minD.20m/min
28.(2022•随州)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离,则下列结论不正确的是( )
A.张强从家到体育场用了15min
B.体育场离文具店1.5km
C.张强在文具店停留了20min
D.张强从文具店回家用了35min
29.(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是( )
A.B.
C.D.
30.(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是( )
A. B.
C. D.
31.(2022•江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是( )
A.甲、乙两种物质的溶解度均随着温度的升高而增大
B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大
C.当温度为0℃时,甲、乙的溶解度都小于20g
D.当温度为30℃时,甲、乙的溶解度相等
32.(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为( )
A.5mB.7m
C.10mD.13m
33.(2022•西藏)周末时,达瓦在体育公园骑自行车锻炼身体,他匀速骑行了一段时间后停车休息,之后继续以原来的速度骑行.路程s(单位:千米)与时间t(单位:分钟)的关系如图所示,则图中的a= .
x
…
﹣1
0
1
2
…
y
…
﹣2
0
2
4
…
2024年中考数学必考考点专题12 圆综合篇(原卷版): 这是一份2024年中考数学必考考点专题12 圆综合篇(原卷版),共12页。试卷主要包含了 切线长定理, 切割线定理,41,cs24°≈0等内容,欢迎下载使用。
2024年中考数学必考考点专题10 相似综合篇(原卷版): 这是一份2024年中考数学必考考点专题10 相似综合篇(原卷版),共13页。试卷主要包含了【问题呈现】等内容,欢迎下载使用。
2024年中考数学必考考点专题07 锐角三角函数综合篇(原卷版): 这是一份2024年中考数学必考考点专题07 锐角三角函数综合篇(原卷版),共10页。