高中化学电解池原理及其应用附练习题
展开
这是一份高中化学电解池原理及其应用附练习题,共16页。试卷主要包含了电解池中电极反应式的书写步骤,常见膜化学,有关电化学计算的三大方法,一种可充电锂-空气电池如图所示等内容,欢迎下载使用。
构建如图电解CuCl2溶液模型,通过类比模型,结合氧化还原反应知识(如:化合价的变化、得失电子情况等),能迅速判断电解池的阴、阳极,弄清楚外电路中电子的移动情况和内电路中离子的移动情况,准确判断离子的放电顺序并书写电极反应式和电解总反应式,掌握电解基本原理。
2.充电(可逆)电池
锌银电池 总反应:Ag2O+Zn+H2O2Ag+Zn(OH)2
正极:Ag2O+H2O+2e-===2Ag+2OH-
负极:Zn+2OH--2e-===Zn(OH)2
阳极:2Ag+2OH--2e-===Ag2O+H2O
阴极:Zn(OH)2+2e-===Zn+2OH-
镍铁电池 总反应:NiO2+Fe+2H2OFe(OH)2+Ni(OH)2
正极:NiO2+2e-+2H2O===Ni(OH)2+2OH-
负极:Fe-2e-+2OH-===Fe(OH)2
阳极:Ni(OH)2+2OH--2e-===NiO2+2H2O
阴极:Fe(OH)2+2e-===Fe+2OH-
镍镉电池 总反应:Cd+2NiOOH+2H2OCd(OH)2+2Ni(OH)2
正极:2NiOOH+2H2O+2e-===2Ni(OH)2+2OH-
负极:Cd-2e-+2OH-===Cd(OH)2
阳极:2Ni(OH)2+2OH--2e-===2NiOOH+2H2O
阴极:Cd(OH)2+2e-===Cd+2OH-
锌铁电池 总反应:3Zn+2K2FeO4+8H2O3Zn(OH)2+2Fe(OH)3+4KOH
正极:2FeO+6e-+8H2O===2Fe(OH)3+10OH-
负极:3Zn-6e-+6OH-===3Zn(OH)2
阳极:2Fe(OH)3+10OH--6e-===2FeO+8H2O
阴极:3Zn(OH)2+6e-===3Zn+6OH-
锂离子电池 总反应:Li1-xCO2+LixC6LiCO2+C6(x
正极Li1-xCO2+xe-+xLi+===LiCO2
负极:LixC6-xe-===xLi++C6
阳极:LiCO2-xe-===Li1-xCO2+xLi+
阴极:xLi++xe-+C6===LixC6
3.电解池中电极反应式的书写步骤
①首先注意阳极是活性材料还是惰性材料。
②分析确定溶液中所有阴阳离子并清楚放电顺序。
③根据放电顺序分析放电产物。
④根据电解质溶液的酸碱性确定电极反应式中是否有H+、OH-或H2O参与;最后配平电极反应式。
4.注意电极产物的溶解性对电极反应式的影响。
电解MgCl2溶液时的阴极反应式应为:Mg2++2H2O+2e-===Mg(OH)2↓+H2↑,而不是
2H++2e-===H2↑。
总反应离子方程式为:Mg2++2Cl-+2H2O==Mg(OH)2↓+Cl2↑+H2↑。
不能把电解MgCl2溶液的离子方程式写成:2Cl-+2H2O==2OH-+Cl2↑+H2↑,忽视了生成难溶的Mg(OH)2。
5.常见膜化学:
(1)膜的作用:阳离子交换膜只允许阳离子通过,阴离子交换膜只允许阴离子通过,质子交换膜允许质子通过而避免不同电极区域内某些离子间的反应。
(2)阴、阳离子交换膜的判断
①看清图示,是否在交换膜上标注了阴、阳离子,是否标注了电源的正、负极,是否标注了电子流向、电荷流向等,明确阴、阳离子的移动方向。
②根据原电池、电解池中阴、阳离子的移动方向,结合题意中给出的制备、电解物质等信息,找出物质生成或消耗的电极区域、确定移动的阴、阳离子,从而推知离子交换膜的种类。
例如三室式电渗析法处理含Na2SO4废水的原理如下图所示,采用惰性电极,ab、cd均为离子交换膜,在直流电场的作用下,两膜中间的Na+和SO2-4可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室。判断ab、cd是什么交换膜;判断离子的迁移方向;书写电极反应式;判断电极产物。
6.有关电化学计算的三大方法
(1)根据电子守恒计算。用于串联电路中电解池阴阳两极产物、原电池正负两极产物、通过的电量等类型的计算,其依据是电路中转移的电子数相等。
(2)根据总反应式计算。先写出电极反应式,再写出总反应式,最后根据总反应式列出比例式计算。
(3)根据关系式计算。根据得失电子守恒关系建立起已知量与未知量之间的桥梁,构建计算所需的关系式。如以通过4 ml e-为桥梁可构建如下关系式:
(式中M为金属,n为其离子的化合价数值)
7.金属腐蚀原理及防护方法总结
(1)常见的电化学腐蚀有两类:①形成原电池时,金属作负极,大多数是吸氧腐蚀;②形成电解池时,金属作阳极。
(2)金属防腐的电化学方法:①原电池原理——牺牲阳极的阴极保护法:与较活泼的金属相连,较活泼的金属作负极被腐蚀,被保护的金属作正极。注意:此处是原电池,牺牲了负极保护了正极,但习惯上叫做牺牲阳极的阴极保护法。
②电解池原理——外加电流的阴极保护法:被保护的金属与电池负极相连,形成电解池,作阴极。
(3)金属的防护。①加防护层:如在金属表面加上油漆、搪瓷、沥青、塑料、橡胶等耐腐蚀的非金属材料;采用电镀或表面钝化等方法在金属表面镀上一层不易被腐蚀的金属或生成一层致密的薄膜。
②电化学防护法。牺牲阳极的阴极保护法——原电池原理:正极为被保护的金属,负极为比被保护的金属活泼的金属;外加电流的阴极保护法——电解原理:阴极为被保护的金属,阳极为惰性电极。
(4)防腐措施效果比较。外加电流的阴极保护法>牺牲阳极的阴极保护法>有一般防腐条件的防护>未采取任何防护措施。
真题训练
1.科学家近年发明了一种新型Zn−CO2水介质电池。电池示意图如图,电极为金属锌和选择性催化材料,放电时,温室气体CO2被转化为储氢物质甲酸等,为解决环境和能源问题提供了一种新途径。
下列说法错误的是( )
A.放电时,负极反应为
B.放电时,1 ml CO2转化为HCOOH,转移的电子数为2 ml
C.充电时,电池总反应为
D.充电时,正极溶液中OH−浓度升高
2.电致变色器件可智能调控太阳光透过率,从而实现节能。下图是某电致变色器件的示意图。当通电时,Ag+注入到无色WO3薄膜中,生成AgxWO3,器件呈现蓝色,对于该变化过程,下列叙述错误的是( )
A.Ag为阳极 B.Ag+由银电极向变色层迁移
C.W元素的化合价升高 D.总反应为:WO3+xAg=AgxWO3
3.电解高浓度(羧酸钠)的溶液,在阳极放电可得到(烷烃)。下列说法不正确的是( )
A.电解总反应方程式:
B.在阳极放电,发生氧化反应
C.阴极的电极反应:
D.电解、和混合溶液可得到乙烷、丙烷和丁烷
4.采用惰性电极,以去离子水和氧气为原料通过电解法制备双氧水的装置如下图所示。忽略温度变化的影响,下列说法错误的是( )
A.阳极反应为
B.电解一段时间后,阳极室的pH未变
C.电解过程中,H+由a极区向b极区迁移
D.电解一段时间后,a极生成的O2与b极反应的O2等量
5.熔融钠-硫电池性能优良,是具有应用前景的储能电池。下图中的电池反应为(x=5~3,难溶于熔融硫),下列说法错误的是( )
A.Na2S4的电子式为
B.放电时正极反应为
C.Na和Na2Sx分别为电池的负极和正极
D.该电池是以为隔膜的二次电池
6.将金属M连接在钢铁设施表面,可减缓水体中钢铁设施的腐蚀。在题图所示的情境中,下列有关说法正确的是
A.阴极的电极反应式为
B.金属M的活动性比Fe的活动性弱
C.钢铁设施表面因积累大量电子而被保护
D.钢铁设施在河水中的腐蚀速率比在海水中的快
7.我国科学家研制了一种新型的高比能量锌−碘溴液流电池,其工作原理示意图如下。图中贮液器可储存电解质溶液,提高电池的容量。
下列叙述不正确的是( )
A.放电时,a电极反应为
B.放电时,溶液中离子的数目增大
C.充电时,b电极每增重,溶液中有被氧化
D.充电时,a电极接外电源负极
8.一种可充电锂-空气电池如图所示。当电池放电时,O2与Li+在多孔碳材料电极处生成Li2O2-x(x=0或1)。下列说法正确的是( )
A.放电时,多孔碳材料电极为负极
B.放电时,外电路电子由多孔碳材料电极流向锂电极
C.充电时,电解质溶液中Li+向多孔碳材料区迁移
D.充电时,电池总反应为Li2O2-x=2Li+(1-)O2
9.我国科学家研发了一种室温下“可呼吸”的Na—CO2二次电池。将NaClO4溶于有机溶剂作为电解液,钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为:3CO2+4Na2Na2CO3+C。下列说法错误的是( )
A.放电时,ClO4-向负极移动
B.充电时释放CO2,放电时吸收CO2
C.放电时,正极反应为:3CO2+4e− =2CO32-+C
D.充电时,正极反应为:Na++e−=Na
参考答案
1.【答案】D
【解析】由题可知,放电时,CO2转化为HCOOH,即CO2发生还原反应,故放电时右侧电极为正极,左侧电极为负极,Zn发生氧化反应生成Zn(OH)42—;充电时,右侧为阳极,H2O发生氧化反应生成O2,左侧为阴极,Zn(OH)42—发生还原反应生成Zn,以此分析解答。
A.放电时,负极上Zn发生氧化反应,电极反应式为:Zn-2e—+4OH—= Zn(OH)42—,故A正确,不选;
B.放电时,CO2转化为HCOOH,C元素化合价降低2,则1mlCO2转化为HCOOH时,转移电子数为2ml,故B正确,不选;
C.充电时,阳极上H2O转化为O2,负极上Zn(OH)42—转化为Zn,电池总反应为:2 Zn(OH)42—=2Zn+O2↑+4OH—+2H2O,故C正确,不选;
D.充电时,正极即为阳极,电极反应式为:2H2O-4e—=4H++O2↑,溶液中H+浓度增大,溶液中c(H+)•c(OH-)=KW,温度不变时,KW不变,因此溶液中OH-浓度降低,故D错误,符合题意;
答案选D。
2.【答案】C
【解析】从题干可知,当通电时,Ag+注入到无色WO3薄膜中,生成AgxWO3器件呈现蓝色,说明通电时,Ag电极有Ag+生成然后经固体电解质进入电致变色层,说明Ag电极为阳极,透明导电层时阴极,故Ag电极上发生氧化反应,电致变色层发生还原反应。
A.通电时,Ag电极有Ag+生成,故Ag电极为阳极,故A项正确;
B.通电时电致变色层变蓝色,说明有Ag+从Ag电极经固体电解质进入电致变色层,故B项正确;
C.过程中,W由WO3的+6价降低到AgxWO3中的+(6-x)价,故C项错误;
D.该电解池中阳极即Ag电极上发生的电极反应为:xAg-xe-= xAg+,而另一极阴极上发生的电极反应为:WO3+xAg++xe- = AgxWO3,故发生的总反应式为:xAg + WO3=AgxWO3,故D项正确;
答案选C。
【点睛】电解池的试题,重点要弄清楚电解的原理,阴、阳极的判断和阴、阳极上电极反应式的书写,阳极反应式+阴极反应式=总反应式,加的过程中需使得失电子数相等。
3.【答案】A
【解析】A.因为阳极RCOO-放电可得到R-R(烷烃)和产生CO2,在强碱性环境中,CO2会与OH-反应生成CO32-和H2O,故阳极的电极反应式为2RCOO--2e-+4OH-=R-R+2CO32-+2H2O,阴极上H2O电离产生的H+放电生成H2,同时生成OH-,阴极的电极反应式为2H2O+2e-=2OH-+H2↑,因而电解总反应方程式为2RCOONa+2NaOHR-R+2Na2CO3+H2↑,故A说法不正确;
B.RCOO-在阳极放电,电极反应式为2RCOO--2e-+4OH-=R-R+2CO32-+2H2O, -COO-中碳元素的化合价由+3价升高为+4价,发生氧化反应,烃基-R中元素的化合价没有发生变化,故B说法正确;
C.阴极上H2O电离产生的H+放电生成H2,同时生成OH-,阴极的电极反应为2H2O+2e-=2OH-+H2↑,故C说法正确;
D.根据题中信息,由上述电解总反应方程式可以确定下列反应能够发生:2CH3COONa+2NaOHCH3-CH3+2Na2CO3+H2↑,2CH3CH2COONa+2NaOHCH3CH2-CH2CH3+2Na2CO3+H2↑,CH3COONa+CH3CH2COONa+2NaOHCH3-CH2CH3+2Na2CO3+H2↑。因此,电解CH3COONa、CH3CH2COONa和NaOH 的混合溶液可得到乙烷、丙烷和丁烷,D说法正确。
答案为A。
4.【答案】D
【解析】a极析出氧气,氧元素的化合价升高,做电解池的阳极,b极通入氧气,生成过氧化氢,氧元素的化合价降低,被还原,做电解池的阴极。
A.依据分析a极是阳极,属于放氧生酸性型的电解,所以阳极的反应式是2H2O-4e-=4H++O2↑,故A正确,但不符合题意;
B.电解时阳极产生氢离子,氢离子是阳离子,通过质子交换膜移向阴极,所以电解一段时间后,阳极室的pH值不变,故B正确,但不符合题意;
C.有B的分析可知,C正确,但不符合题意;
D.电解时,阳极的反应为:2H2O-4e-=4H++O2↑,阴极的反应为:O2+2e-+2H+=H2O2,总反应为:O2+2H2O=2H2O2,要消耗氧气,即是a极生成的氧气小于b极消耗的氧气,故D错误,符合题意;
故选:D。
5.【答案】C
【解析】根据电池反应:可知,放电时,钠作负极,发生氧化反应,电极反应为:Na-e-= Na+,硫作正极,发生还原反应,电极反应为,据此分析。
A.Na2S4属于离子化合物,4个硫原子间形成三对共用电子对,电子式为,故A正确;
B.放电时发生的是原电池反应,正极发生还原反应,电极反应为:,故B正确;
C.放电时,Na为电池的负极,正极为硫单质,故C错误;
D.放电时,该电池是以钠作负极,硫作正极的原电池,充电时,是电解池,为隔膜,起到电解质溶液的作用,该电池为二次电池,故D正确;
答案选C。
6.【答案】C
【解析】该装置为原电池原理的金属防护措施,为牺牲阳极的阴极保护法,金属M作负极,钢铁设备作正极,据此分析解答。
A.阴极的钢铁设施实际作原电池的正极,正极金属被保护不失电子,故A错误;
B.阳极金属M实际为原电池装置的负极,电子流出,原电池中负极金属比正极活泼,因此M活动性比Fe的活动性强,故B错误;
C.金属M失电子,电子经导线流入钢铁设备,从而使钢铁设施表面积累大量电子,自身金属不再失电子从而被保护,故C正确;
D.海水中的离子浓度大于河水中的离子浓度,离子浓度越大,溶液的导电性越强,因此钢铁设施在海水中的腐蚀速率比在河水中快,故D错误;故选:C。
7.【答案】D
【解析】放电时,Zn是负极,负极反应式为Zn−2e− ═Zn2+,正极反应式为I2Br− +2e− =2I− +Br− ,充电时,阳极反应式为Br− +2I− −2e− =I2Br− 、阴极反应式为Zn2++2e− =Zn,只有阳离子能穿过交换膜,阴离子不能穿过交换膜,据此分析解答。
A、放电时,a电极为正极,碘得电子变成碘离子,正极反应式为I2Br− +2e− =2I− +Br− ,故A正确;
B、放电时,正极反应式为I2Br− +2e− =2I− +Br− ,溶液中离子数目增大,故B正确;
C、充电时,b电极反应式为Zn2++2e− =Zn,每增加0.65g,转移0.02ml电子,阳极反应式为Br− +2I− −2e− =I2Br− ,有0.02mlI− 失电子被氧化,故C正确;
D、充电时,a是阳极,应与外电源的正极相连,故D错误;故选D。
【点睛】本题考查化学电源新型电池,会根据电极上发生的反应判断正负极是解本题关键,会正确书写电极反应式,易错选项是B,正极反应式为I2Br− +2e− =2I− +Br− ,溶液中离子数目增大。
8.【答案】D
【解析】本题考查的是电池的基本构造和原理,应该先根据题目叙述和对应的示意图,判断出电池的正负极,再根据正负极的反应要求进行电极反应方程式的书写。
A.题目叙述为:放电时,O2与Li+在多孔碳电极处反应,说明电池内,Li+向多孔碳电极移动,因为阳离子移向正极,所以多孔碳电极为正极,选项A错误。
B.因为多孔碳电极为正极,外电路电子应该由锂电极流向多孔碳电极(由负极流向正极),选项B错误。
C.充电和放电时电池中离子的移动方向应该相反,放电时,Li+向多孔碳电极移动,充电时向锂电极移动,选项C错误。
D.根据图示和上述分析,电池的正极反应应该是O2与Li+得电子转化为Li2O2-X,电池的负极反应应该是单质Li失电子转化为Li+,所以总反应为:2Li + (1-)O2 = Li2O2-X,充电的反应与放电的反应相反,所以为Li2O2-x= 2Li + (1-)O2,选项D正确。
点睛:本题是比较典型的可充电电池问题。对于此类问题,还可以直接判断反应的氧化剂和还原剂,进而判断出电池的正负极。本题明显是空气中的氧气得电子,所以通氧气的为正极,单质锂就一定为负极。放电时的电池反应,逆向反应就是充电的电池反应,注意:放电的负极,充电时应该为阴极;放电的正极充电时应该为阳极。
9.【答案】D
【解析】原电池中负极发生失去电子的氧化反应,正极发生得到电子的还原反应,阳离子向正极移动,阴离子向负极移动,充电可以看作是放电的逆反应,据此解答。A.放电时是原电池,阴离子ClO4-向负极移动,A正确;B.电池的总反应为3CO2+4Na2Na2CO3+C,因此充电时释放CO2,放电时吸收CO2,B正确;C.放电时是原电池,正极是二氧化碳得到电子转化为碳,反应为:3CO2+4e−=2CO32-+C,C正确;D.充电时是电解,正极与电源的正极相连,作阳极,发生失去电子的氧化反应,反应为2CO32-+C-4e−=3CO2,D错误。答案选D。
相关试卷
这是一份高中化学原电池原理及其应用附练习题,共14页。试卷主要包含了解答新型化学电源的步骤,燃料电池电极反应式的书写,其他新型一次电池等内容,欢迎下载使用。
这是一份化学选择性必修1第四章 化学反应与电能第二节 电解池优秀第二课时同步达标检测题,共10页。试卷主要包含了工业上电解食盐水的阴极区产物是,下列描述中,不符合生产实际的是,某兴趣小组设计如图微型实验装置等内容,欢迎下载使用。
这是一份苏教版 (2019)第二单元 化学能与电能的转化测试题,共23页。试卷主要包含了单选题,填空题,实验探究题等内容,欢迎下载使用。