中考强化训练贵州省安顺市中考数学模拟汇总 (A)卷(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
A.B.C.D.不确定
2、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
A.B.y随x的增大而增大
C.当时,D.关于x的方程的解是
3、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米B.10米C.4米D.12米
4、一元二次方程的根为( )
A.B.C.D.
5、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A.B.C.D.
6、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.D.
7、下列语句中,不正确的是( )
A.0是单项式B.多项式的次数是4
C.的系数是D.的系数和次数都是1
8、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
A.B.C.D.
9、如图,、是的切线,、是切点,点在上,且,则等于( )
A.54°B.58°C.64°D.68°
10、下列计算中,正确的是( )
A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,,与分别是斜边上的高和中线,那么_______度.
2、若,则的值是______.
3、若a+b=﹣3,ab=1,则(a+1)(b+1)(a﹣1)(b﹣1)=_____.
4、勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发行了以勾股定理为背景的邮票.如图,在中,,,.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为______.
5、如图所示, 用手电来测量古城墙高度,将水平的平面镜放置在点 处, 光线从点 出发,经过平面镜反射后,光线刚好照到古城墙 的顶端 处. 如果 , 米, 米, 米, 那么该古城墙的高度是__________米
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、如图,在数轴上点A表示数a,点B表示数b,点C表示数c,且a、c满足.若点A与点B之间的距离表示为,点B与点C之间的距离表示为,点B在点A、C之间,且满足.
(1)___________, ___________,___________.
(2)动点M从B点位置出发,沿数轴以每秒1个单位的速度向终点C运动,同时动点N从A点出发,沿数轴以每秒2个单位的速度向C点运动,设运动时间为t秒.问:当t为何值时,M、N两点之间的距离为3个单位?
2、如图1,在平面直角坐标系中,已知、、、,以为边在下方作正方形.
(1)求直线的解析式;
(2)点为正方形边上一点,若,求的坐标;
(3)点为正方形边上一点,为轴上一点,若点绕点按顺时针方向旋转后落在线段上,请直接写出的取值范围.
3、计算:(x+2)(4x﹣1)+2x(2x﹣1).
4、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知,,求证:.
将证明过程补充完整,并在括号内填写推理依据.
证明:∵_____________(已知)
∴(_______________________)
∴.________(____________________)
∵(已知)
∴________(等量代换)
∴(___________________)
5、如图,△ABC中,∠BAC=90°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.
-参考答案-
一、单选题
1、C
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据公式,得=,=,判断选择即可.
【详解】
∵=,=,
∴=.
故选C.
【点睛】
本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
2、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
3、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
∴a=﹣,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
4、C
【分析】
先移项,把方程化为 再利用直接开平方的方法解方程即可.
【详解】
解:,
即
故选C
【点睛】
本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
5、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
6、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
7、D
【分析】
分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
【详解】
解:A、0是单项式,正确,不符合题意;
B、多项式的次数是4,正确,不符合题意;
C、的系数是,正确,不符合题意;
D、的系数是-1,次数是1,错误,符合题意,
故选:D.
【点睛】
本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
8、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:∵袋子中共有6个小球,其中白球有3个,
∴摸出一个球是白球的概率是.
故选:C.
【点睛】
本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
9、C
【分析】
连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
【详解】
解:连接,,如下图:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
∵PA、PB是的切线,A、B是切点
∴
∴由四边形的内角和可得:
故选C.
【点睛】
此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
10、C
【分析】
根据整式的加减及幂的运算法则即可依次判断.
【详解】
A. a2+a3不能计算,故错误;
B. a•a=a2,故错误;
C. a•3a2=3a3,正确;
D. 2a3﹣a=2a2不能计算,故错误;
故选C.
【点睛】
此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
二、填空题
1、50
【解析】
【分析】
根据直角三角形中线的性质及互为余角的性质计算.
【详解】
解:,为边上的高,
,
,是斜边上的中线,
,
,
的度数为.
故答案为:50.
【点睛】
本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质.
2、-2
【解析】
【分析】
将的值代入原式=计算可得.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:=
将代入,原式==-2
故答案为:-2
【点睛】
本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
3、-5
【解析】
【分析】
根据多项式乘多项式的乘法法则解决此题.
【详解】
解:∵a+b=-3,ab=1,
∴(a+1)(b+1)(a-1)(b-1)
=[(a+1)(b+1)][(a-1)(b-1)]
=(ab+a+b+1)(ab-a-b+1)
=(1-3+1)×(1+3+1)
=-1×5
=-5.
故答案为:-5.
【点睛】
本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.
4、12
【解析】
【分析】
证明Rt△AIC≌Rt△CGK,得到AI=CG,利用勾股定理结合面积法求得CG=,进一步计算即可求解.
【详解】
解:过点A作AI⊥BC于点I,
∵正方形ACKL,∴∠ACK=90°,AC=CK,
∴∠ACI+∠KCG=90°,∠ACI+∠CAI=90°,
∴Rt△AIC≌Rt△CGK,
∴AI=CG,
∵,,.
∴BC=5,
∵,
∴AI=,则CG=,
∵正方形BCDE,
∴CD=BC=5,
∴长方形CDPG的面积为5.
故答案为:12.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
.
【点睛】
本题考查了全等三角形的判定和性质,勾股定理,熟记各图形的性质并准确识图是解题的关键.
5、10
【解析】
【分析】
根据两个三角形相似、对应边长度比成比例求出古城墙高度.
【详解】
∵入射角=反射角
∴入射角的余角∠APB=反射角的余角∠CPD
又AB⊥BD;CD⊥BD
∴△ABP∽△CDP
∴
∴CD=PD×=10
故答案为:10
【点睛】
本题考查相似三角形在求建筑物的高度中的应用,找出比例是关键.
三、解答题
1、
(1)-2,2,10;
(2)1或7
【分析】
(1)根据非负性,得到a+2=0,c-10=0,将线段长转化为绝对值即|b-c|=2||a-b,化简绝对值;
(2)先用t分别表示M,N代表的数,根据MN=3,转化为绝对值问题求解.
(1)
∵,
∴a= -2,c=10,
∵点B在点A、C之间,且满足,
∴10-b=2(b+2),
解得b=2,
故答案为:-2,2,10;
(2)
设运动时间为t秒,则点N表示的数为2t-2;点M表示的数为t+2,
根据题意,得|t+2-(2t-2)|=3,
∴-t+4=3或-t+4= -3,
解得t=1或t=7,
故t为1或7时,M、N两点之间的距离为3个单位.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了实数的非负性,数轴上两点间的距离,绝对值的化简,熟练把线段长转化为绝对值表示是解题的关键.
2、
(1)
(2),,,
(3)或
【分析】
(1)待定系数法求直线解析式,代入坐标、得出,解方程组即可;
(1)根据OA=2,OB=4,设点P在y轴上,点P坐标为(0,m),根据S△ABP=8,求出点P(0,4)或(0,-12),过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,利用平行线性质求出与AB平行过点P的解析式,与CD,FE的交点,过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,利用平行线性质求出与AB平行过点P的解析式,求出与DE,EF的交点即可;
(3):根据点N在正方形边上,分四种情况①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,先证△HNM1≌△GM1N′(AAS),求出点N′(6-m,m-6)在线段AB上,代入解析式直线的解析式得出,当点N旋转与点B重合,可得M2N′=NM2-OB=6-4=2②在上,当点N绕点M3旋转与点A重合,先证△HNM3≌△GM3N′(AAS),DH=M3G=6-2=4,HM3=GN′=2,③在上,当点N与点F重合绕点M4旋转到AB上N′先证△M5NM3≌△GM3N′(AAS),得出点N′(-6-m,m+6),点N′在线段AB上,直线的解析式,得出方程,,当点N绕点M5旋转点N′与点A重合,证明△FM3N≌△OM5N′(AAS),可得FM5=M5O=6,FN=ON′=2,④在上,点N绕点M6旋转点N′与点B重合,MN=MB=2即可.
(1)
解:设,代入坐标、得:
,
,
∴直线的解析式;
(2)
解:∵、、OA=2,OB=4,设点P在y轴上,点P坐标为(0,m)
∵S△ABP=8,
∴,
∴,
解得,
∴点P(0,4)或(0,-12),
过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,
设解析式为,m=2,n=4,
∴,
当y=6时,,
解得,
当y=-6时,,
解得,
,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,
设解析式为,
,
当y=-6, ,
解得:,
当x=6, ,
解得,
,
∴,的坐标为或或或,
(3)
解:①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,
∵M1N=M1N′,∠NM1N′=90°,
∴∠HNM1+∠HM1N=90°,∠HM1N+∠GM1N′=90°,
∴∠HNM1=∠GM1N′,
在△HNM1和△GM1N′中,
,
∴△HNM1≌△GM1N′(AAS),
∴DH=M1G=6,HM1=GN′=6-m,
∵点N′(6-m,m-6)在线段AB上,直线的解析式;
即,
解得,
当点N旋转与点B重合,
∴M2N′=NM2-OB=6-4=2,
,,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②在上,
当点N绕点M3旋转与点A重合,
∵M3N=M3N′,∠NM3N′=90°,
∴∠HNM3+∠HM3N=90°,∠HM3N+∠GM3N′=90°,
∴∠HNM3=∠GM3N′,
在△HNM3和△GM3N′中,
,
∴△HNM3≌△GM3N′(AAS),
∴DH=M3G=6-2=4,HM3=GN′=2,
,,
③在上,
当点N与点F重合绕点M4旋转到AB上N′,
∵M4N=M4N′,∠NM4N′=90°,
∴∠M5NM4+∠M5M4N=90°,∠M5M4N+∠GM4N′=90°,
∴∠M5NM4=∠GM4N′,
在△M5NM4和△GM4N′中,
,
∴△M5NM3≌△GM3N′(AAS),
∴FM5=M4G=6,M5M4=GN′=-6-m,
∴点N′(-6-m,m+6),
点N′在线段AB上,直线的解析式;
,
解得,
当点N绕点M5旋转点N′与点A重合,
∵M5N=M5N′,∠NM5N′=90°,
∴∠NM5O+∠FM5N=90°,∠OM5N+∠OM5N′=90°,
∴∠FM5N=∠OM5N′,
在△FM5N和△OM5N′中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
∴△FM3N≌△OM5N′(AAS),
∴FM5=M5O=6,FN=ON′=2,
,,,
④在上,
点N绕点M6旋转点N′与点B重合,MN=MB=2,
,,,
综上:或
【点睛】
本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力.
3、
【分析】
根据单项式乘以多项式,多项式乘以多项式的法则进行乘法运算,再合并同类项即可.
【详解】
解:
【点睛】
本题考查的是整式的乘法运算,掌握“单项式乘以多项式与多项式乘以多项式的法则”是解本题的关键.
4、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
【分析】
先由,证明,可得,结合已知条件证明,再证明即可.
【详解】
解:证明:∵(已知)
∴(同旁内角互补,两直线平行)
∴.(两直线平行,内错角相等)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
【点睛】
本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
5、60°
【分析】
由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.
【详解】
解:由折叠可知,∠BAD=∠B'AD,
∵AB'平分∠CAD.
∴∠B'AC=∠B'AD,
∴∠BAD=∠B'AC=∠B'AD,
∵∠BAC=90°,
∴∠BAD=∠B'AC=∠B'AD=30°,
∴∠BAB'=60°.
【点睛】
本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.
中考强化训练贵州省兴仁市中考数学模拟汇总 卷(Ⅲ)(含答案解析): 这是一份中考强化训练贵州省兴仁市中考数学模拟汇总 卷(Ⅲ)(含答案解析),共24页。试卷主要包含了如图,A等内容,欢迎下载使用。
中考强化训练贵州省安顺市中考数学高频模拟汇总卷: 这是一份中考强化训练贵州省安顺市中考数学高频模拟汇总卷,共23页。
中考强化训练贵州省中考数学模拟汇总 卷(Ⅱ)(含答案及解析): 这是一份中考强化训练贵州省中考数学模拟汇总 卷(Ⅱ)(含答案及解析),共28页。试卷主要包含了下列方程中,解为的方程是,如图,下列条件中不能判定的是等内容,欢迎下载使用。