上海市南洋模范中学2023-2024学年高二下学期4月段考数学试卷(原卷版+解析版)
展开
这是一份上海市南洋模范中学2023-2024学年高二下学期4月段考数学试卷(原卷版+解析版),文件包含上海市南洋模范中学2023-2024学年高二下学期4月段考数学试卷原卷版docx、上海市南洋模范中学2023-2024学年高二下学期4月段考数学试卷解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
一、填空题(本大题共有12小题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得0分.
1. 已知双曲线C焦点为和,离心率为,则C的方程为____________.
2. 直线被圆截得的弦长为________.
3. 直线:,:它们的夹角为________
4. 设直线l经过点,则当点与直线l的距离最远时,直线l的方程为________.
5. 若椭圆的离心率为,则______.
6. 已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
7. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm,则该抛物线的焦点到准线的距离为______cm.
8. 已知圆,圆,圆与圆、圆外切,则圆心的轨迹方程为__________.
9. 设,过定点A的动直线和过定点B的动直线交于点,则的最大值是______.
10. 已知椭圆与双曲线有相同的焦点,点是两曲线的一个公共点,且,若双曲线为等轴双曲线,则椭圆的离心率为______.
11. 已知是抛物线上的一点,为抛物线的焦点,为坐标原点.当时,,则________.
12. 已知曲线,,其中.
①当时,曲线与有4个公共点;
②当时,曲线围成的区域面积大于曲线围成的区域面积;
③,曲线围成的区域面积等于围成的区域面积;
④,曲线围成的区域内整点(即横、坐标均为整数的点)个数不少于曲线围成的区域内整点个数.
其中,所有正确结论的序号是________.
二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.
13. 已知直线与直线互相平行,则实数值为( )
A. B. 2或C. 2D.
14. 设为坐标原点,为抛物线焦点,是抛物线上一点,若,则点的个数为( )
A. 0B. 1C. 2D. 3
15. 已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
A. B. C. D.
16. 《九章算术》中记载了我国古代数学家祖暅在计算球体积时使用的一个原理:“幂势既同,则积不容异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.已知双曲线,若双曲线右焦点到渐近线的距离记为,双曲线的两条渐近线与直线,以及双曲线的右支围成的图形(如图中阴影部分所示)绕轴旋转一周所得几何体的体积为(其中),则双曲线的离心率为( )
A. B. C. D.
三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤
17. 已知平面内两定点,动点P满足.
(1)求动点P的轨迹C的方程;
(2)若直线与曲线C交于不同的两点A、B,求.
18. 已知直线和圆.
(1)判断直线与圆的位置关系;若相交,求直线被圆截得的弦长;
(2)求过点且与圆相切的直线方程.
19. 某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图所示,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为,线路AB段上的任意一点N到景点M的距离比到景点的距离都多6km,线路BC段上任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多6km,以O为原点建立平面直角坐标系xOy.
(1)求轨道交通s号线线路示意图所在曲线的方程;
(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G位置?
20. 已知双曲线的左、右焦点为.
(1)若双曲线的离心率为,且,是正三角形,求的方程;
(2)若,点在双曲线的右支上,且直线的斜率为.若,求
(3)在(1)的条件下,若动直线与恰有1个公共点且与的两条渐近线分别交于记的面积为,的面积为(是坐标原点),问:是否存在最小值?若存在,求出该最小值,若不存在,请说明理由.
21. 已知抛物线C:的焦点为F,过F的直线交C于A,B两点,过F与垂直的直线交C于D,E两点,其中B,D在x轴上方,M,N分别为,的中点.
(1)若,求点M的横坐标;
(2)证明:直线过定点;
(3)设G为直线与直线交点,求面积的最小值.
相关试卷
这是一份上海市南洋模范中学2023-2024学年高二下学期4月段考数学试卷,文件包含2023-2024学年上海市南模中学高二年级下学期段考-解析版docx、2023-2024学年上海市南模中学高二年级下学期段考-学生版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份上海市南洋模范中学2023-2024学年高二上学期9月月考数学试卷,共4页。
这是一份2021-2022学年上海市南洋模范中学高二下学期期中数学试题(解析版),共15页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。