综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解)
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、作平分线的作图过程如下:
作法:(1)在和上分别截取、,使.
(2)分别以,为圆心,大于的长为半径作弧,两弧交于点.
(3)作射线,则就是的平分线.
用下面的三角形全等的判定解释作图原理,最为恰当的是( )
A.B.C.D.
2、如图,在中,,,平分,则的度数是( )
A.B.C.D.
3、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓
A.1B.2
C.3D.4
4、如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为( )
A.6B.7C.8D.9
5、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )
A.1B.2C.7D.8
二、多选题(5小题,每小题4分,共计20分)
1、如图,已知,在和中,如果AB =DE,BC =EF.在下列条件中能保证≌· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
的是( )
A.∠B=∠DEFB.AC=DFC.AB∥DED.∠A=∠D
2、如图,在方格中,以为一边作,使之与全等,则在,,,四个点中,符合条件的点有( )
A.B.C.D.
3、在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )
A.三角形有且只有一条中线
B.三角形的高一定在三角形内部
C.三角形的两边之差大于第三边
D.三角形按边分类可分为等腰三角形和不等边三角形
4、如图,O是正六边形ABCDE的中心,下列图形不可能由△OBC平移得到的是( )
A.△OCDB.△OABC.△OAFD.△OEF
5、在四边形ABCD中,ADBC,若∠DAB的平分线AE交CD于E,连接BE,且BE也平分∠ABC,则以下的命题中正确的是( )
A.BC+AD=ABB.E为CD中点
C.∠AEB=90°D.S△ABE=S四边形ABCD
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如图,中,,三角形的外角和的平分线交于点E,则的度数为________.
2、如图,AD 是△ABC 的中线,BE 是△ABD 的中线, EF BC 于点 F.若,BD 4 ,则 EF 长为___________.
3、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
点(不包括端点C),将沿PF折叠,使点C落在点E处.若,当点E到点A的距离最大时,_____.
4、若直角三角形的一个锐角为,则另一个锐角等于________.
5、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.
四、解答题(5小题,每小题8分,共计40分)
1、如图,在△ABC中,∠ABC=90°,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF.
(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度数.
2、在四边形ABCD中,,.
(1)如图①,若,求出的度数;
(2)如图②,若的角平分线交AB于点E,且,求出的度数;
(3)如图③,若和的角平分线交于点E,求出的度数.
3、阅读材料并完成习题:
在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.
解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.
(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.
(2)请你用上面学到的方法完成下面的习题.
如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.
4、如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、如图(1)所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图(2),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、图(1)XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX =__________°;
②如图(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;(写出解答过程)
③如图(4),∠ABD,∠ACD的10等分线相交于点G1、G2、G9,若∠BDC=140°,∠BG1C=77°,则∠A的度数=__________°.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.
【详解】
∵分别以,为圆心,大于的长为半径作弧,两弧交于点;
∴CE=CD,
在△OCE和△OCD中,,
∴△OCE≌△OCD(SSS),
故选:A.
【考点】
本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.
2、C
【解析】
【分析】
在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和定理即可求出的度数.
【详解】
∵在中,,.
∴.
∵平分.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴.
∴.
故选C.
【考点】
本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键.
3、A
【解析】
【分析】
用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.
【详解】
如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边
故答案为:A.
【考点】
本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.
4、B
【解析】
【分析】
如图,在上截取 连接证明利用全等三角形的性质证明 求解 再证明 从而可得答案.
【详解】
解:如图,在上截取 连接
平分
故选:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【考点】
本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键.
5、C
【解析】
【分析】
如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,,从而可得,,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案.
【详解】
解:如图,设这个凸五边形为,连接,并设,
在中,,即,
在中,,即,
所以,,
在中,,
所以,
观察四个选项可知,只有选项C符合,
故选:C.
【考点】
本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键.
二、多选题
1、ABC
【解析】
【分析】
非直角三角形,已知两组对应边相等,合适的判定条件有SAS,SSS.依据三角形全等的判定即可判断.
【详解】
这三个条件可组成SAS判定,故A正确
这三个条件可组成SSS判定,故B正确
由AB∥DE可得∠B=∠DEF,这三个条件可组成SAS判定,故C正确
这三个条件中对应角不是夹角,ASS不构成全等三角形判定条件,故D错误
综上,故选ABC
【考点】
本题主要考查了三角形全等的判定,熟悉三角形全等的判定条件是解决本题的关键.
2、ACD
【解析】
【分析】
根据全等三角形的对应边相等判断即可.
【详解】
解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,
故选:ACD.
【考点】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.
3、ABC
【解析】
【分析】
三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断.
【详解】
解:A.三角形有3条中线,选项A的说法是错误的;
B.三角形的高不一定在三角形内部,选项B的说法是错误的;
C.三角形的两边之差小于第三边,选项C的说法是错误的;
D.三角形按边分类可分为等腰三角形和不等边三角形是正确的.
故答案为:ABC.
【考点】
本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键.
4、ABD
【解析】
【分析】
利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。.
【详解】
解: O是正六边形ABCDE的中心,
都是等边三角形,
都不能由平移得到,可以由平移得到,
故符合题意,不符合题意;
故选:
【考点】
本题考查的是正多边形的性质,平移的定义,平移的性质,熟悉平移的含义与性质是解题的关键.
5、ABCD
【解析】
【分析】
在AB上截取AF=AD.证明△AED≌△AEF,△BEC≌△BEF.可证4个结论都正确.
【详解】
解:在AB上截取AF=AD
则△AED≌△AEF(SAS)
∴∠AFE=∠D.
∵ADBC,
∴∠D+∠C=180°.
∴∠C=∠BFE.
∴△BEC≌△BEF(AAS).
∴①BC=BF,故AB=BC+AD;
②CE=EF=ED,即E是CD中点;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
③∠AEB=∠AEF+∠BEF=∠DEF+∠CEF=×180°=90°;
④S△AEF=S△AED,S△BEF=S△BEC,
∴S△AEB=S四边形BCEF+S四边形EFAD=S四边形ABCD.
故选ABCD.
【考点】
此题考查全等三角形的判定与性质,运用了截取法构造全等三角形解决问题,难度中等.
三、填空题
1、
【解析】
【分析】
本题先通过三角形内角和求解∠BAC与∠BCA的和,继而利用邻补角以及角分线定义求解∠EAC与∠ECA的和,最后利用三角形内角和求解此题.
【详解】
∵,
∴,
又∵,,
∴.
∵三角形的外角和的平分线交于点E,
∴,,
∴,
即.
故填:.
【考点】
本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可.
2、3
【解析】
【分析】
因为S△ABD=S△ABC,S△BDE=S△ABD;所以S△BDE=S△ABC,再根据三角形的面积公式求得即可.
【详解】
解:∵AD是△ABC的中线,S△ABC=24,
∴S△ABD=S△ABC=12,
同理,BE是△ABD的中线,,
∵S△BDE=BD•EF,
∴BD•EF=6,
即
∴EF=3.
故答案为:3.
【考点】
此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.
3、##59度
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用且,得到,再根据折叠性质可知:,利用补角可知,进一步可求出.
【详解】
解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:
∵且,
∴,
∵折叠得到,
∴,
∵,
∴.
故答案为:
【考点】
本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可.
4、75°
【解析】
【分析】
根据三角形内角和定理计算即可.
【详解】
解:∵另一个锐角为15°,
∴另一个锐角为180°-90°-15°=75°,
故答案为:75°.
【考点】
本题考查了直角三角形的性质,解题的关键是掌握直角三角形两锐角互余.
5、35°.
【解析】
【分析】
根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.
【详解】
解:∵△ABC≌△ADE,
∴∠EAD=∠CAB,
∴∠EAD-∠CAD=∠CAB-∠CAD,
∴∠2=∠1=35°.
故答案为35°.
【考点】
此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.
四、解答题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、(1)见解析;(2)∠ACF的度数为60°
【解析】
【分析】
(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;
(2)根据题意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,进而可以求出∠ACF的度数.
【详解】
(1)证明:∵∠ABC=90°,
∴∠ABC=∠CBF=90°.
在△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS);
(2)解:∵△ABE≌△CBF,
∴∠BAE=∠BCF,
∵∠ABC=90°,AB=CB,
∴∠BCA=∠BAC=45°,
∵∠CAE=30°,
∴∠BAE=15°,
∴∠BCF=15°,
∵∠ACF=∠BCF+∠ACB,
∴∠ACF=15°+45°=60°.
答:∠ACF的度数为60°.
【考点】
本题主要考查全等三角形的判定与性质,解此题的关键在于熟练掌握全等三角形的判定方法.
2、 (1)
(2)
(3)
【解析】
【分析】
(1)利用四边形内角和进行角的计算即可;
(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;
(3)利用角平分线得出,,结合三角形内角和定理即可得出结果.
(1)
解:∵四边形的内角和是360°,,
∴
∵
∴
(2)
∵,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∵CE平分
∴
∵
∴
(3)
∵BE,CE分别平分和
∴,
∴
∴在中,.
【考点】
题目主要考查四边形内角和及平行线的性质,角平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键.
3、(1)2;(2)4
【解析】
【分析】
(1)根据题意可直接求等腰直角三角形EAC的面积即可;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.
【详解】
(1)由题意知,
故答案为2;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:
FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,
∠FNK=∠FGH=90°,,
FH=FK,
又FM=FM,HM=KM=MN+GH=MN+NK,
,
MK=FN=2cm,
.
【考点】
本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、见解析
【解析】
【分析】
根据角平分线的性质证明△BAC≌△DAE,即可得到结果;
【详解】
证明:∵AC是∠BAE的平分线,
∴∠BAC=∠DAE,
∵∠C=∠E,AB=AD.
∴△BAC≌△DAE(AAS),
∴BC=DE.
【考点】
本题主要考查了三角形的全等判定及性质,准确利用角平分线的进行计算是解题的关键.
5、(1)∠BDC=∠A+∠B+∠C,详见解析;(2)①40;②∠DCE=90°;③70
【解析】
【分析】
(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;
(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;
②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.
③由②方法,进而可得答案.
【详解】
解:(1)连接AD并延长至点F,
由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
∵∠BDC=∠BDF+∠CDF,
∴∠BDC=∠BAD+∠B+∠C+∠CAD.
∵∠BAC=∠BAD+∠CAD;
∴∠BDC=∠BAC +∠B+∠C;
(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,
∵∠A=50°,∠BXC=90°,
∴∠ABX+∠ACX=90°﹣50°=40°.
故答案是:40;
②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A
∵∠DAE=50°,∠DBE=130°,
∴∠ADB+∠AEB=80°;
∵DC平分∠ADB,EC平分∠AEB,
∴∠ADC=∠ADB,∠AEC=∠AEB
∴∠DCE=(∠ADB+∠AEB)+∠A=40°+50°=90°;
③由②知,∠BG1C=(∠ABD+∠ACD)+ ∠A,
∵∠BG1C=77°,
∴设∠A为x°,
∵∠ABD+∠ACD=140°﹣x°,
∴(140﹣x)+x=77,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴14﹣x+x=77,
∴x=70,
∴∠A为70°.
故答案是:70.
【考点】
本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(详解版): 这是一份综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(详解版),共29页。试卷主要包含了如图,锐角△ABC的两条高BD等内容,欢迎下载使用。
综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解): 这是一份综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解),共27页。试卷主要包含了下列说法中错误的是等内容,欢迎下载使用。
综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含详解): 这是一份综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含详解),共28页。试卷主要包含了下列图形为正多边形的是等内容,欢迎下载使用。