模拟汇总湖南省怀化市中考数学五年真题汇总 卷(Ⅲ)(精选)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个B.3 个C.4 个D.5 个.
2、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
A.abB.a+bC.abD.a
3、一元二次方程的根为( )
A.B.C.D.
4、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A.B.C.D.
5、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
A.24B.27C.32D.36
6、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.y随x的增大而增大
C.当时,D.关于x的方程的解是
7、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
8、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
9、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高B.在中,是边上的高
C.在中,是边上的高D.在中,是边上的高
10、如图,在中,,,,则的度数为( )
A.87°B.88°C.89°D.90°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
2、已知:直线与直线的图象交点如图所示,则方程组的解为______.
3、如图,在中,,,与分别是斜边上的高和中线,那么_______度.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、平面内,,C为内部一点,射线平分,射找平分,射线平分,当时,的度数是____________.
5、如图, 已知在 中, 是 边上一点, 将 沿 翻折, 点 恰好落在边 上的点 处,那么__________
三、解答题(5小题,每小题10分,共计50分)
1、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
(1)这两种玻璃保温杯各购进多少个?
(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
2、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.
﹣2,-(﹣4),0,+(﹣1),1,﹣|﹣3|
3、某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.
(1)请用含x的式子表示空白部分长方形的面积;(要化简)
(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.
4、计算:.
5、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
-参考答案-
一、单选题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
2、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
3、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
先移项,把方程化为 再利用直接开平方的方法解方程即可.
【详解】
解:,
即
故选C
【点睛】
本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
4、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
5、C
【分析】
利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
【详解】
解:∵AD=DE,S△BDE=96,
∴S△ABD=S△BDE=96,
过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵AD平分∠BAC,
∴DG=DF,
∴△ACD与△ABD的高相等,
又∵AB=3AC,
∴S△ACD=S△ABD=.
故选:C.
【点睛】
本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
6、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
7、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
8、B
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
9、C
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
10、A
【分析】
延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
【详解】
解:延长DB至E,使BE=AB,连接AE,
∴∠BAE=∠E,
∵,
∴∠BAE=∠E=31°,
∵AB+BD=CD
∴BE+BD=CD
即DE=CD,
∵AD⊥BC,
∴AD垂直平分CE,
∴AC=AE,
∴∠C=∠E=31°,
∴;
故选:A.
【点睛】
此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
二、填空题
1、
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
故答案为:.
【点睛】
此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
2、
【解析】
【分析】
根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.
【详解】
解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),
∴方程组的解为.
故答案为.
【点睛】
本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.
3、50
【解析】
【分析】
根据直角三角形中线的性质及互为余角的性质计算.
【详解】
解:,为边上的高,
,
,是斜边上的中线,
,
,
的度数为.
故答案为:50.
【点睛】
本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质.
4、45°或15°
【解析】
【分析】
根据角平分线的定义和角的运算,分射线OD在∠AOC外部和射线OD在∠AOC内部求解即可.
【详解】
解:∵射线平分,射找平分,
∴∠MOC= ∠AOC,∠NOC= ∠BOC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB=60°,
∵射线平分,
∴∠MOD= ∠MON=30°,
若射线OD在∠AOC外部时,如图1,
则∠COD=∠MOD-∠MOC=30°-∠AOC,
即2∠COD=60°-∠AOC,
∵,
∴,
解得:∠AOC=45°或15°;
若射线OD在∠AOC内部时,如图2,
则∠COD=∠MOC-∠MOD=∠AOC-30°,
∴2∠COD=∠AOC-60°,即∠AOC-2∠COD=60°,不满足,
综上,∠AOC=45°或15°,
故答案为:45°或15°.
【点睛】
本题考查角平分线的定义、角的运算,熟练掌握角平分线的定义和角的有关计算,利用分类讨论思想求解是解答的关键.
5、##
【解析】
【分析】
翻折的性质可知,;在中有,;,得是等腰三角形,即可求出长度.
【详解】
解:翻折可知:,
∵,,
∴在中,
∴,
∵
∴
∴是等腰三角形
∴
∴
故答案为:.
【点睛】
本题考查了轴对称的性质,等腰三角形的判定与性质,三角形的外角,勾股定理等知识点.解题的关键在于找出边相等的关系.
三、解答题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、
(1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
(2)该商店共获利530元
【分析】
(1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;
(2)根据单件利润=售价-进价和总利润=单件利润×销量求解即可.
(1)
解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,
根据题意,得:35x+65(80-x)=3700,
解得:x=50,
80-x=80-50=30(个),
答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
(2)
解:根据题意,总利润为
(50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)
=240+290
=530(元),
答:该商店共获利530元.
【点睛】
本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.
2、数轴见解析,-|-3|<-2<+(-1)<0<1<-(-4)
【分析】
先根据相反数,绝对值进行计算,再在数轴上表示出各个数,再比较大小即可.
【详解】
解:-(-4)=4,+(-1)=-1,-|-3|=-3,
-|-3|<-2<+(-1)<0<1<-(-4).
【点睛】
本题考查了数轴,有理数的大小比较,绝对值和相反数等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.
3、
(1)
(2)超过,理由见解析
【分析】
(1)空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.得空白部分长方形的面积;
(2)通过有理数的混合运算得结果与400进行比较.
(1)
空白部分长方形的两条边长分别是(30-2x)m,(20-x)m.
空白部分长方形的面积:(30-2x)(20-x)=(2x2-70x+600) m2.
(2)
超过.
∵2×22-70×2+600=468(m2),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵468>400,
∴空白部分长方形面积能超过400 m2.
【点睛】
本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.
4、-12
【分析】
观察此题,先计算乘除,再计算加减即可.
【详解】
原式,
,
.
【点睛】
本题考查有理数的混合运算,先乘除后加减是解题关键.
5、见解析
【分析】
根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
【详解】
证明:如图:延长BE交AC于点F,
∵BF⊥AD,
∴∠AEB=∠AEF.
∵AD平分∠BAC
∴∠BAE=∠FAE
在△ABE和△AFE中,
∴△ABE≌△AFE (ASA)
∴∠ABF=∠AFB, AB=AF, BE=EF
∵∠C+∠CBF=∠AFB=∠ABF
∴∠ABF+∠CBF=∠ABC=3∠C
∴∠C+2∠CBF=3∠C
∴∠CBF=∠C
∴BF=CF
∴BE=BF=CF
∵CF=AC-AF=AC-AB
∴BE= (AC-AB)
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键
价格\类型
A型
B型
进价(元/个)
35
65
标价(元/个)
50
100
模拟汇总湖南省怀化市中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解): 这是一份模拟汇总湖南省怀化市中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解),共26页。试卷主要包含了如图,,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
模拟汇总湖南省益阳市中考数学真题汇总 卷(Ⅱ)(精选): 这是一份模拟汇总湖南省益阳市中考数学真题汇总 卷(Ⅱ)(精选),共30页。试卷主要包含了下列各式中,不是代数式的是,如图,有三块菜地△ACD,下列方程变形不正确的是等内容,欢迎下载使用。
模拟真题湖南省中考数学历年真题汇总 卷(Ⅲ)(精选): 这是一份模拟真题湖南省中考数学历年真题汇总 卷(Ⅲ)(精选),共25页。试卷主要包含了下列图形是全等图形的是,下列式子中,与是同类项的是,下列等式变形中,不正确的是等内容,欢迎下载使用。