|试卷下载
搜索
    上传资料 赚现金
    四川省雅安市高2024届第二次诊断性考试文科数学试卷(附参考答案)
    立即下载
    加入资料篮
    四川省雅安市高2024届第二次诊断性考试文科数学试卷(附参考答案)01
    四川省雅安市高2024届第二次诊断性考试文科数学试卷(附参考答案)02
    四川省雅安市高2024届第二次诊断性考试文科数学试卷(附参考答案)03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省雅安市高2024届第二次诊断性考试文科数学试卷(附参考答案)

    展开
    这是一份四川省雅安市高2024届第二次诊断性考试文科数学试卷(附参考答案),共11页。试卷主要包含了已知数列满足,则,已知平面区域则的最大值为,已知函数,给出下列4个图象等内容,欢迎下载使用。

    数学(文科)
    本试卷满分150分,考试时间120分钟.
    注意事项:
    1.答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.已知集合,则( )
    A. B. C. D.
    2.复数,则( )
    A. B. C.2 D.
    3.某公司收集了某商品销售收入(万元)与相应的广告支出(万元)共10组数据,绘制出如下散点图,并利用线性回归模型进行拟合.
    若将图中10个点中去掉点后再重新进行线性回归分析,则下列说法正确的是( )
    A.决定系数变小
    B.残差平方和变小
    C.相关系数的值变小
    D.解释变量与预报变量相关性变弱
    4.已知分别为的边的中点,若,则点的坐标为( )
    A. B. C. D.
    5.已知数列满足,则( )
    A.-3 B. C. D.2
    6.已知平面区域则的最大值为( )
    A.8 B.4 C.3 D.2
    7.在区间随机取1个数,则使得的概率为( )
    A. B. C. D.
    8.已知函数,则下列说法中,正确的是( )
    A.的最小值为-1
    B.在区间上单调递增
    C.的最小正周期为
    D.的图象可由的图象向右平移个单位得到
    9.如图,菱形的对角线与交于点是的中位线,与交于点,已知是绕旋转过程中的一个图形,且平面.给出下列结论:
    ①平面;
    ②平面平面;
    ③“直线直线”始终不成立.
    其中所有正确结论的序号为( )
    A.①②③ B.①② C.①③ D.②③
    10.已知函数,给出下列4个图象:( )
    其中,可以作为函数的大致图象的个数为( )
    A.1 B.2 C.3 D.4
    11.已知分别是双曲线的左右焦点,若过的直线与圆相切,与在第一象限交于点,且轴,则的离心率为( )
    A. B.3 C. D.
    12.已知均为正数,且,则的大小关系为( )
    A. B.
    C. D.
    二、填空题:本题共4小题,每小题5分,共20分.
    13.已知函数则的值为__________.
    14.已知,则曲线在点处的切线方程为__________.
    15.已知数列的前项和为,且,则__________.
    16.一个圆锥的顶点和底面圆都在半径为2的球体表面上,当圆锥的体积最大时,其底面圆的半径为__________.
    三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生依据要求作答.
    (一)必考题:共60分.
    17.(12分)
    某校在课外活动期间设置了文化艺术类活动和体育锻炼类活动,为了解学生对这两类活动的参与情况,统计了如下数据:
    (1)通过计算判断,有没有的把握认为该校学生所选择课外活动的类别与性别有关系?
    (2)为收集学生对课外活动建议,在参加文化艺术类活动的学生中按性别用分层抽样的方法抽取了6名同学.若在这6名同学中随机抽取2名,求所抽取的2名同学中至少有1名女生的概率.
    附表及公式:
    其中.
    18.(12分)
    如图,在三棱锥中,为边上的一点,.
    (1)证明:平面;
    (2)设点为边的中点,试判断三棱锥的体积是否有最大值?如果有,请求出最大值;如果没有,请说明理由.
    19.(12分)
    已知的内角的对边分别为,且.
    (1)求角;
    (2)若是的角平分线,的面积为,求的值.
    20.(12分)
    在直角坐标系中,设为抛物线的焦点,为上位于第一象限内一点.当时,的面积为1.
    (1)求的方程;
    (2)当时,如果直线与抛物线交于两点,直线的斜率满足.证明直线是恒过定点,并求出定点坐标.
    21.(12分)
    已知函数.
    (1)若存在极值,求的取值范围;
    (2)若,证明:.
    (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分.
    22.[选修:坐标系与参数方程](10分)
    在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
    (1)求的普通方程和的直角坐标方程;
    (2)设直线与轴相交于点,动点在上,点满足,点的轨迹为,试判断曲线与曲线是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.
    23.[选修4-5:不等式选讲](10分)
    已知均为正数,且.
    (1)是否存在,使得,说明理由;
    (2)证明:.
    文科数学参考答案及评分细则
    一、选择题:本题共12小题,每小题5分,共60分.
    1.C 2.D 3.B 4.A 5.A 6.B 7.C 8.D 9.B 10.D 11.D 12.B
    二、填空题:本题共4小题,每小题5分,共20分.
    13. 14. 15. 16.
    三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生依据要求作答.
    17.【解析】1,
    因此,有的把握认为该校学生选择课外活动类别与性别有关系.
    (2)这6名同学中女生有2名,记为,男生有4名,记为.
    从这6名同学中随机抽取2名的所有基本事件有:,,,共15个.
    其中,至少有1名女生的基本事件有9个.
    所以,所抽取的2名同学中至少有1名女生的概率为即.
    18.【解析】(1)证明:因为在中,,
    所以.
    又因为,所以,
    所以.
    在中,由余弦定理可得,
    所以.
    因此,,即.
    又,
    所以平面.
    (2)因为点为边的中点,
    所以.
    由(1)知平面,
    而平面,所以平面平面.
    又平面平面,
    过点作平面于点,则点必在直线上.
    于是,当点与点重合时,点到平面的距离最大,
    且最大距离为.
    因为,
    所以,
    故,
    所以三棱锥的体积有最大值,最大值为.
    19.【解析】(1)由得,
    根据正弦定理可得,
    因为,
    所以,
    因为,所以,
    所以,
    由,
    所以.
    (2)由,
    所以,
    又,
    因为为角平分线,所以,又,
    所以有,
    所以,
    由余弦定理得

    所以.
    20.【解析】(1)由题意得.
    由,得.
    从而的面积,则.
    所以,抛物线的方程为.
    (2)设,则.
    由,得,即.
    所以,此时.
    由题意可知,斜率必不等于0,于是可设.
    由可得.
    上述方程的判别式满足,即.
    设.
    根据韦达定理有:.
    因为,
    所以,
    于是.
    所以,,即.
    故直线的方程为,即,
    所以直线恒过定点.
    21.【解析】(1)由,得,
    当时,,则单调递增,不存在极值.
    当时,令,则,
    若,则单调递减;若,则单调递增.
    所以是的极小值点.
    所以,当时,存在极值,
    综上所述,存在极值时,的取值范围是.
    (2)欲证不等式在时恒成立,
    只需证明在时恒成立.
    设,
    则,
    令,则.
    可知,时,,
    则即单调递增,
    所以.
    因为,所以,
    故,则单调递增.
    所以,
    即时,不等式恒成立.
    选考题
    22.【解析】(1)由知,
    则曲线的普通方程为.
    因为直线的方程为,即.
    由可得.
    所以直线的直角坐标方程为.
    (2)由(1)可知,点的坐标为.
    因为,所以是线段的中点.
    由题意,可设,


    代入曲线的方程,可得
    ,即.
    解之可得,.
    此时,.
    由此可知,两曲线有两个公共点,其直角坐标为.
    23.【解析】(1)不存在,使得.理由如下:
    因为都是正数,且,所以,
    所以

    当且仅当,即时取等号,
    即的最小值为,
    所以,不存在,使得.
    (2)【证明】
    .
    当且仅当时等号成立,
    所以.文化艺术类
    体育锻炼类
    合计

    100
    300
    400

    50
    100
    150
    合计
    150
    400
    550
    0.15
    0.10
    0.05
    0.025
    0.010
    2.072
    2.706
    3.841
    5.024
    6.635
    相关试卷

    四川省遂宁市高2024届第二次诊断性考试理科数学试卷(附参考答案): 这是一份四川省遂宁市高2024届第二次诊断性考试理科数学试卷(附参考答案),共12页。试卷主要包含了已知数列满足,则,已知函数,给出下列4个图象等内容,欢迎下载使用。

    四川省宜宾市2024届高三下学期第二次诊断性考试文科数学试卷(Word版附解析): 这是一份四川省宜宾市2024届高三下学期第二次诊断性考试文科数学试卷(Word版附解析),文件包含四川省宜宾市2024届高三下学期第二次诊断性考试文科数学试卷Word版含解析docx、四川省宜宾市2024届高三下学期第二次诊断性考试文科数学试卷Word版无答案docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    成都市2021级高中毕业班第二次诊断性检测文科数学(附参考答案): 这是一份成都市2021级高中毕业班第二次诊断性检测文科数学(附参考答案),文件包含2021级二诊数学文参考答案pdf、2021级成都二诊文科数学pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map